7,066 research outputs found

    Quantum Topology Change in (2 + 1)d

    Get PDF
    The topology of orientable (2 + 1)d spacetimes can be captured by certain lumps of non-trivial topology called topological geons. They are the topological analogues of conventional solitons. We give a description of topological geons where the degrees of freedom related to topology are separated from the complete theory that contains metric (dynamical) degrees of freedom. The formalism also allows us to investigate processes of quantum topology change. They correspond to creation and annihilation of quantum geons. Selection rules for such processes are derived.Comment: LaTeX file, 33 pages, 10 postscript figures, some typos corrected, references updated, and other minor change

    Some aspects of the synchronization in coupled maps

    Full text link
    Through numerical simulations we analyze the synchronization time and the Lyapunov dimension of a coupled map lattice consisting of a chain of chaotic logistic maps exhibiting power law interactions. From the observed behaviors we find a lower bound for the size NN of the lattice, independent of the range and strength of the interaction, which imposes a practical lower bound in numerical simulations for the system to be considered in the thermodynamic limit. We also observe the existence of a strong correlation between the averaged synchronization time and the Lyapunov dimension. This is an interesting result because it allows an analytical estimation of the synchronization time, which otherwise requires numerical simulations.Comment: 4 pages, 6 figure

    Electron Spin Resonance of defects in the Haldane System Y(2)BaNiO(5)

    Full text link
    We calculate the electron paramagnetic resonance (EPR) spectra of the antiferromagnetic spin-1 chain compound Y(2)BaNi(1-x)Mg(x)O(5) for different values of x and temperature T much lower than the Haldane gap (~100K). The low-energy spectrum of an anisotropic Heisenberg Hamiltonian, with all parameters determined from experiment, has been solved using DMRG. The observed EPR spectra are quantitatively reproduced by this model. The presence of end-chain S=1/2 states is clearly observed as the main peak in the spectrum and the remaining structure is completely understood.Comment: 5 pages, 4 figures include

    Variational Mote Carlo Study of Flat Band Ferromagnetism -- Application to CeRh_3 B_2

    Full text link
    A new mechanism for ferromagnetism in CeRh_3B_2 is proposed on the basis of variational Monte Carlo results. In a one-dimensional Anderson lattice where each 4f electron hybridizes with a ligand orbital between neighboring Ce sites, ferromagnetism is stabilized due to a nearly flat band which is a mixture of conduction and 4f electron states. Because of the strong spin-orbit interaction in 4f electron states, and of considerable amount of hybridization in the nearly flat band, the magnetic moments from 4f and conduction electrons tend to cancel each other. The resultant ferromagnetic moment becomes smaller as compared with the local 4f moment, and the Fermi surface in the ferromagnetic ground state is hardly affected by the presence of 4f electrons. These theoretical results are consistent with experimental observations in CeRh_3B_2 by neutron scattering and dHvA effects.Comment: to be published in J.Phys.Soc.Jp

    Magnetic field-induced phase transitions in a weakly coupled s = 1/2 quantum spin dimer system Ba3_{3}Cr2_{2}O8_{8}

    Full text link
    By using bulk magnetization, electron spin resonance (ESR), heat capacity, and neutron scattering techniques, we characterize the thermodynamic and quantum phase diagrams of Ba3_3Cr2_2O8_8. Our ESR measurements indicate that the low field paramagnetic ground state is a mixed state of the singlet and the Sz_z = 0 triplet for HcH \perp c. This suggests the presence of an intra-dimer Dzyaloshinsky-Moriya (DM) interaction with a DM vector perpendicular to the c-axis

    Statistics of finite-time Lyapunov exponents in the Ulam map

    Full text link
    The statistical properties of finite-time Lyapunov exponents at the Ulam point of the logistic map are investigated. The exact analytical expression for the autocorrelation function of one-step Lyapunov exponents is obtained, allowing the calculation of the variance of exponents computed over time intervals of length nn. The variance anomalously decays as 1/n21/n^2. The probability density of finite-time exponents noticeably deviates from the Gaussian shape, decaying with exponential tails and presenting 2n12^{n-1} spikes that narrow and accumulate close to the mean value with increasing nn. The asymptotic expression for this probability distribution function is derived. It provides an adequate smooth approximation to describe numerical histograms built for not too small nn, where the finiteness of bin size trimmes the sharp peaks.Comment: 6 pages, 4 figures, to appear in Phys. Rev.

    Regge Analysis of Diffractive and Leading Baryon Structure Functions from DIS

    Full text link
    In this paper we present a combined analysis of the H1 data on leading baryon and diffractive structure functions from DIS, which are handled as two components of the same semi-inclusive process. The available structure function data are analyzed in a series of fits in which three main exchanges are taking into account: pomeron, reggeon and pion. For each of these contributions, Regge factorization of the correspondent structure function is assumed. By this procedure, we extract information about the interface between the diffractive, pomeron-dominated, region and the leading proton spectrum, which is mostly ruled by secondary exchanges. One of the main results is that the relative reggeon contribution to the semi-inclusive structure function is much smaller than the one obtained from a analysis of the diffractive structure function alone.Comment: ps file, 22 pages, 5 figures. Totally revised version with major changes, to appear in Physical Review

    Behavior of the diffractive cross section in hadron-nucleus collisions

    Get PDF
    A phenomenological analysis of diffractive dissociation of nuclei in proton-nucleus and meson-nucleus collisions is presented. The theoretical approach employed here is able to take into account at once data of the HELIOS and EHS/NA22 collaborations that exhibit quite different atomic mass dependences. Possible extensions of this approach to hard diffraction in nuclear processes are also discussed.Comment: 5 pages, 2 figure
    corecore