3,462 research outputs found
Lattice Boltzmann simulations of a viscoelastic shear-thinning fluid
We present a hybrid lattice Boltzmann algorithm for the simulation of flow
glass-forming fluids, characterized by slow structural relaxation, at the level
of the Navier-Stokes equation. The fluid is described in terms of a nonlinear
integral constitutive equation, relating the stress tensor locally to the
history of flow. As an application, we present results for an integral
nonlinear Maxwell model that combines the effects of (linear) viscoelasticity
and (nonlinear) shear thinning. We discuss the transient dynamics of
velocities, shear stresses, and normal stress differences in planar
pressure-driven channel flow, after switching on (startup) and off (cessation)
of the driving pressure. This transient dynamics depends nontrivially on the
channel width due to an interplay between hydrodynamic momentum diffusion and
slow structural relaxation
A Simplest Swimmer at Low Reynolds Number: Three Linked Spheres
We propose a very simple one-dimensional swimmer consisting of three spheres
that are linked by rigid rods whose lengths can change between two values. With
a periodic motion in a non-reciprocal fashion, which breaks the time-reversal
symmetry as well as the translational symmetry, we show that the model device
can swim at low Reynolds number. This model system could be used in
constructing molecular-size machines
Drag Reduction by Bubble Oscillations
Drag reduction in stationary turbulent flows by bubbles is sensitive to the
dynamics of bubble oscillations. Without this dynamical effect the bubbles only
renormalize the fluid density and viscosity, an effect that by itself can only
lead to a small percentage of drag reduction. We show in this paper that the
dynamics of bubbles and their effect on the compressibility of the mixture can
lead to a much higher drag reduction.Comment: 7 pages, 1 figure, submitted to Phys. Rev.
Channel Flow of a Tensorial Shear-Thinning Maxwell Model: Lattice Boltzmann Simulations
We introduce a nonlinear generalized tensorial Maxwell-type constitutive
equation to describe shear-thinning glass-forming fluids, motivated by a recent
microscopic approach to the nonlinear rheology of colloidal suspensions. The
model captures a nonvanishing dynamical yield stress at the glass transition
and incorporates normal-stress differences. A modified lattice-Boltzmann (LB)
simulation scheme is presented that includes non-Newtonian contributions to the
stress tensor and deals with flow-induced pressure differences. We test this
scheme in pressure-driven 2D Poiseuille flow of the nonlinear generalized
Maxwell fluid. In the steady state, comparison with an analytical solution
shows good agreement. The transient dynamics after startup and cessation of the
pressure gradient are studied; the simulation reproduces a finite stopping time
for the cessation flow of the yield-stress fluid in agreement with previous
analytical estimates
Universal Tomonaga-Luttinger liquid phases in one-dimensional strongly attractive SU(N) fermionic cold atoms
A simple set of algebraic equations is derived for the exact low-temperature
thermodynamics of one-dimensional multi-component strongly attractive fermionic
atoms with enlarged SU(N) spin symmetry and Zeeman splitting. Universal
multi-component Tomonaga-Luttinger liquid (TLL) phases are thus determined. For
linear Zeeman splitting, the physics of the gapless phase at low temperatures
belongs to the universality class of a two-component asymmetric TLL
corresponding to spin-neutral N-atom composites and spin-(N-1)/2 single atoms.
The equation of states is also obtained to open up the study of multi-component
TLL phases in 1D systems of N-component Fermi gases with population imbalance.Comment: 12 pages, 3 figure
Exactly solvable models and ultracold Fermi gases
Exactly solvable models of ultracold Fermi gases are reviewed via their
thermodynamic Bethe Ansatz solution. Analytical and numerical results are
obtained for the thermodynamics and ground state properties of two- and
three-component one-dimensional attractive fermions with population imbalance.
New results for the universal finite temperature corrections are given for the
two-component model. For the three-component model, numerical solution of the
dressed energy equations confirm that the analytical expressions for the
critical fields and the resulting phase diagrams at zero temperature are highly
accurate in the strong coupling regime. The results provide a precise
description of the quantum phases and universal thermodynamics which are
applicable to experiments with cold fermionic atoms confined to one-dimensional
tubes.Comment: based on an invited talk at Statphys24, Cairns (Australia) 2010. 16
pages, 6 figure
Hydrodynamic phase-locking of swimming microorganisms
Some microorganisms, such as spermatozoa, synchronize their flagella when
swimming in close proximity. Using a simplified model (two infinite, parallel,
two-dimensional waving sheets), we show that phase-locking arises from
hydrodynamics forces alone, and has its origin in the front-back asymmetry of
the geometry of their flagellar waveform. The time-evolution of the phase
difference between co-swimming cells depends only on the nature of this
geometrical asymmetry, and microorganisms can phase-lock into conformations
which minimize or maximize energy dissipation
Motion and homogenization of vortices in anisotropic Type II superconductors
The motion of vortices in an anisotropic superconductor is considered. For a system of well-separated vortices, each vortex is found to obey a law of motion analogous to the local induction approximation, in which velocity of the vortex depends upon the local curvature and orientation. A system of closely packed vortices is then considered, and a mean field model is formulated in which the individual vortex lines are replaced by a vortex density
Evidence for the super Tonks-Girardeau gas
We provide evidence in support of a recent proposal by Astrakharchik at al.
for the existence of a super Tonks-Girardeau gas-like state in the attractive
interaction regime of quasi-one-dimensional Bose gases. We show that the super
Tonks-Giradeau gas-like state corresponds to a highly-excited Bethe state in
the integrable interacting Bose gas for which the bosons acquire hard-core
behaviour. The gas-like state properties vary smoothly throughout a wide range
from strong repulsion to strong attraction. There is an additional stable
gas-like phase in this regime in which the bosons form two-body bound states
behaving like hard-core bosons.Comment: 10 pages, 1 figure, 2 tables, additional text on the stability of the
super T-G gas-like stat
Shear flow pumping in open microfluidic systems
We propose to drive open microfluidic systems by shear in a covering fluid
layer, e.g., oil covering water-filled chemical channels. The advantages as
compared to other means of pumping are simpler forcing and prevention of
evaporation of volatile components. We calculate the expected throughput for
straight channels and show that devices can be built with off-the-shelf
technology. Molecular dynamics simulations suggest that this concept is
scalable down to the nanoscale.Comment: 4 pages, 4 figure, submitted to Phys. Rev. Let
- …