1,383 research outputs found

    Two regimes for effects of surface disorder on the zero-bias conductance peak of tunnel junctions involving d-wave superconductors

    Full text link
    Impurity-induced quasiparticle bound states on a pair-breaking surface of a d-wave superconductor are theoretically described, taking into account hybridization of impurity- and surface-induced Andreev states. Further a theory for effects of surface disorder (of thin impurity surface layer) on the low-bias conductance of tunnel junctions is developed. We find a threshold ncn_c for surface impurity concentration nSn_S, which separates the two regimes for surface impurity effects on the zero-bias conductance peak (ZBCP). Below the threshold, surface impurities do not broaden the ZBCP, but effectively reduce its weight and generate impurity bands. For low nSn_S impurity bands can be, in principle, resolved experimentally, being centered at energies of bound states induced by an isolated impurity on the surface. For larger nSn_S impurity bands are distorted, move to lower energies and, beginning with the threshold concentration nS=ncn_S=n_c, become centered at zero energy. With increasing nSn_S above the threshold, the ZBCP is quickly destroyed in the case of strong scatterers, while it is gradually suppressed and broaden in the presence of weak impurity potentials. More realistic cases, taking into account additional broadening, not related to the surface disorder, are also considered.Comment: 9 pages, 7 figure

    MED12 regulates a transcriptional network of calcium-handling genes in the heart

    No full text
    The Mediator complex regulates gene transcription by linking basal transcriptional machinery with DNA-bound transcription factors. The activity of the Mediator complex is mainly controlled by a kinase submodule that is composed of 4 proteins, including MED12. Although ubiquitously expressed, Mediator subunits can differentially regulate gene expression in a tissue-specific manner. Here, we report that MED12 is required for normal cardiac function, such that mice with conditional cardiac-specific deletion of MED12 display progressive dilated cardiomyopathy. Loss of MED12 perturbs expression of calcium-handling genes in the heart, consequently altering calcium cycling in cardiomyocytes and disrupting cardiac electrical activity. We identified transcription factors that regulate expression of calcium-handling genes that are downregulated in the heart in the absence of MED12, and we found that MED12 localizes to transcription factor consensus sequences within calcium-handling genes. We showed that MED12 interacts with one such transcription factor, MEF2, in cardiomyocytes and that MED12 and MEF2 co-occupy promoters of calcium-handling genes. Furthermore, we demonstrated that MED12 enhances MEF2 transcriptional activity and that overexpression of both increases expression of calcium-handling genes in cardiomyocytes. Our data support a role for MED12 as a coordinator of transcription through MEF2 and other transcription factors. We conclude that MED12 is a regulator of a network of calcium-handling genes, consequently mediating contractility in the mammalian heart

    Excitonic effects on the two-color coherent control of interband transitions in bulk semiconductors

    Full text link
    Quantum interference between one- and two-photon absorption pathways allows coherent control of interband transitions in unbiased bulk semiconductors; carrier population, carrier spin polarization, photocurrent injection, and spin current injection may all be controlled. We extend the theory of these processes to include the electron-hole interaction. Our focus is on photon energies that excite carriers above the band edge, but close enough to it so that transition amplitudes based on low order expansions in k\mathbf{k} are applicable; both allowed-allowed and allowed-forbidden two-photon transition amplitudes are included. Analytic solutions are obtained using the effective mass theory of Wannier excitons; degenerate bands are accounted for, but envelope-hole coupling is neglected. We find a Coulomb enhancement of two-color coherent control process, and relate it to the Coulomb enhancements of one- and two-photon absorption. In addition, we find a frequency dependent phase shift in the dependence of photocurrent and spin current on the optical phases. The phase shift decreases monotonically from π/2\pi /2 at the band edge to 0 over an energy range governed by the exciton binding energy. It is the difference between the partial wave phase shifts of the electron-hole envelope function reached by one- and two-photon pathways.Comment: 31 pages, 4 figures, to be published in Phys. Rev.

    Resonant scattering in a strong magnetic field: exact density of states

    Full text link
    We study the structure of 2D electronic states in a strong magnetic field in the presence of a large number of resonant scatterers. For an electron in the lowest Landau level, we derive the exact density of states by mapping the problem onto a zero-dimensional field-theoretical model. We demonstrate that the interplay between resonant and non-resonant scattering leads to a non-analytic energy dependence of the electron Green function. In particular, for strong resonant scattering the density of states develops a gap in a finite energy interval. The shape of the Landau level is shown to be very sensitive to the distribution of resonant scatterers.Comment: 12 pages + 3 fig

    Free particle scattering off two oscillating disks

    Full text link
    We investigate the two-dimensional classical dynamics of the scattering of point particles by two periodically oscillating disks. The dynamics exhibits regular and chaotic scattering properties, as a function of the initial conditions and parameter values of the system. The energy is not conserved since the particles can gain and loose energy from the collisions with the disks. We find that for incident particles whose velocity is on the order of the oscillating disk velocity, the energy of the exiting particles displays non-monotonic gaps of allowed energies, and the distribution of exiting particle velocities shows significant fluctuations in the low energy regime. We also considered the case when the initial velocity distribution is Gaussian, and found that for high energies the exit velocity distribution is Gaussian with the same mean and variance. When the initial particle velocities are in the irregular regime the exit velocity distribution is Gaussian but with a smaller mean and variance. The latter result can be understood as an example of stochastic cooling. In the intermediate regime the exit velocity distribution differs significantly from Gaussian. A comparison of the results presented in this paper to previous chaotic static scattering problems is also discussed.Comment: 9 doble sided pages 13 Postscript figures, REVTEX style. To appear in Phys. Rev.

    Quantum point contact on graphite surface

    Get PDF
    The conductance through a quantum point contact created by a sharp and hard metal tip on the graphite surface has features which to our knowledge have not been encountered so far in metal contacts or in nanowires. In this paper we first investigate these features which emerge from the strongly directional bonding and electronic structure of graphite, and provide a theoretical understanding for the electronic conduction through quantum point contacts. Our study involves the molecular-dynamics simulations to reveal the variation of interlayer distances and atomic structure at the proximity of the contact that evolves by the tip pressing toward the surface. The effects of the elastic deformation on the electronic structure, state density at the Fermi level, and crystal potential are analyzed by performing self-consistent-field pseudopotential calculations within the local-density approximation. It is found that the metallicity of graphite increases under the uniaxial compressive strain perpendicular to the basal plane. The quantum point contact is modeled by a constriction with a realistic potential. The conductance is calculated by representing the current transporting states in Laue representation, and the variation of conductance with the evolution of contact is explained by taking the characteristic features of graphite into account. It is shown that the sequential puncturing of the layers characterizes the conductance.Comment: LaTeX, 11 pages, 9 figures (included), to be published in Phys. Rev. B, tentatively scheduled for 15 September 1998 (Volume 58, Number 12

    Electron-electron interaction at decreasing kFlk_Fl

    Full text link
    The contribution of the electron-electron interaction to conductivity is analyzed step by step in gated GaAs/InGaAs/GaAs heterostructures with different starting disorder. We demonstrate that the diffusion theory works down to kFl1.52k_F l\simeq 1.5-2, where kFk_F is the Fermi quasimomentum, ll is the mean free paths. It is shown that the e-e interaction gives smaller contribution to the conductivity than the interference independent of the starting disorder and its role rapidly decreases with kFlk_Fl decrease.Comment: 5 pages, 6 figure

    Numerical atomic orbitals for linear scaling

    Full text link
    The performance of basis sets made of numerical atomic orbitals is explored in density-functional calculations of solids and molecules. With the aim of optimizing basis quality while maintaining strict localization of the orbitals, as needed for linear-scaling calculations, several schemes have been tried. The best performance is obtained for the basis sets generated according to a new scheme presented here, a flexibilization of previous proposals. The basis sets are tested versus converged plane-wave calculations on a significant variety of systems, including covalent, ionic and metallic. Satisfactory convergence (deviations significantly smaller than the accuracy of the underlying theory) is obtained for reasonably small basis sizes, with a clear improvement over previous schemes. The transferability of the obtained basis sets is tested in several cases and it is found to be satisfactory as well.Comment: 9 pages with 2 encapsulated postscript figures, submitted to Phys. Rev.

    Graphite and Hexagonal Boron-Nitride Possess the Same Interlayer Distance. Why?

    Full text link
    Graphite and hexagonal boron nitride (h-BN) are two prominent members of the family of layered materials possessing a hexagonal lattice. While graphite has non-polar homo-nuclear C-C intra-layer bonds, h-BN presents highly polar B-N bonds resulting in different optimal stacking modes of the two materials in bulk form. Furthermore, the static polarizabilities of the constituent atoms considerably differ from each other suggesting large differences in the dispersive component of the interlayer bonding. Despite these major differences both materials present practically identical interlayer distances. To understand this finding, a comparative study of the nature of the interlayer bonding in both materials is presented. A full lattice sum of the interactions between the partially charged atomic centers in h-BN results in vanishingly small monopolar electrostatic contributions to the interlayer binding energy. Higher order electrostatic multipoles, exchange, and short-range correlation contributions are found to be very similar in both materials and to almost completely cancel out by the Pauli repulsions at physically relevant interlayer distances resulting in a marginal effective contribution to the interlayer binding. Further analysis of the dispersive energy term reveals that despite the large differences in the individual atomic polarizabilities the hetero-atomic B-N C6 coefficient is very similar to the homo-atomic C-C coefficient in the hexagonal bulk form resulting in very similar dispersive contribution to the interlayer binding. The overall binding energy curves of both materials are thus very similar predicting practically the same interlayer distance and very similar binding energies.Comment: 18 pages, 5 figures, 2 table

    Phase 1 study of seviteronel, a selective CYP17 lyase and androgen receptor inhibitor, in women with estrogen receptor-positive or triple-negative breast cancer

    Get PDF
    Purpose: Seviteronel (INO-464) is an oral, selective cytochrome P450c17a (CYP17) 17,20-lyase (lyase) and androgen receptor inhibitor with in vitro and in vivo anti-tumor activity. This open-label phase 1 clinical study evaluated safety, tolerability, pharmacokinetics (PK), and activity of once-daily (QD) seviteronel in women with locally advanced or metastatic TNBC or ER+ breast cancer. Methods: Seviteronel was administered in de-escalating 750, 600, and 450 mg QD 6-subject cohorts. The 750 mg QD start dose was a phase 2 dose determined for men with castration-resistant prostate cancer in (Shore et al. J Clin Oncol 34, 2016). Enrollment at lower doses was initiated in the presence of dose-limiting toxicities (DLTs). The primary objective of this study was to determine seviteronel safety, tolerability, and MTD. The secondary objectives included description of its PK in women and its initial activity, including clinical benefit rate at 4 (CBR16) and 6 months (CBR24). Results: Nineteen women were enrolled. A majority of adverse events (AEs) were Grade (Gr) 1/2, independent of relationship; the most common were tremor (42%), nausea (42%), vomiting (37%), and fatigue (37%). Four Gr 3/4 AEs (anemia, delirium, mental status change, and confusional state) deemed possibly related to seviteronel occurred in four subjects. DLTs were observed at 750 mg (Gr 3 confusional state with paranoia) and 600 mg (Gr 3 mental status change and Gr 3 delirium) QD, with none at 450 mg QD. The recommended phase 2 dose (RP2D) was 450 mg QD, and at the RP2D, 4 of 7 subjects reached at least CBR16 (2 TNBC subjects and 2 ER+ subjects achieved CBR16 and CBR24, respectively); no objective tumor responses were reported. Conclusions: Once-daily seviteronel was generally well tolerated in women with and 450 mg QD was chosen as the RP2D
    corecore