29 research outputs found

    Comparison between the calculated and measured dose distributions for four beams of 6 MeV linac in a human-equivalent phantom

    Get PDF
    Radiation dose distributions in various parts of the body are of importance in radiotherapy. Also, the percent depth dose at different body depths is an important parameter in radiation therapy applications. Monte Carlo simulation techniques are the most accurate methods for such purposes. Monte Carlo computer calculations of photon spectra and the dose ratios at surfaces and in some internal organs of a human equivalent phantom were performed. In the present paper, dose distributions in different organs during bladder radiotherapy by 6 MeV X-rays were measured using thermoluminescence dosimetry placed at different points in the human-phantom. The phantom was irradiated in exactly the same manner as in actual bladder radiotherapy. Four treatment fields were considered to maximize the dose at the center of the target and minimize it at non-target healthy organs. All experimental setup information was fed to the MCNP-4b code to calculate dose distributions at selected points inside the proposed phantom. Percent depth dose distribution was performed. Also, the absorbed dose as ratios relative to the original beam in the surrounding organs was calculated by MCNP-4b and measured by thermoluminescence dosimetry. Both measured and calculated data were compared. Results indicate good agreement between calculated and measured data inside the phantom. Comparison between MCNP-4b calculations and measurements of depth dose distribution indicated good agreement between both

    An In-Depth Examination of the Natural Radiation and Radioactive Dangers Associated with Regularly Used Medicinal Herbs

    Full text link
    The specific activity of U-238 and Th-232, as well as K-40 radionuclides, in twenty-nine investigated medicinal herbs used in Egypt has been measured using a high-purity germanium (HP Ge) detector. The measured values ranged from the BDL to 20.71 ± 1.52 with a mean of 7.25 ± 0.54 (Bq kg−1) for uranium-238, from the BDL to 29.35 ± 1.33 with a mean of 7.78 ± 0.633 (Bq kg−1) for thorium-232, and from 172 ± 5.85 to 1181.2 ± 25.5 with a mean of 471.4 ± 11.33 (Bq kg−1) for potassium-40. Individual herbs with the highest activity levels were found to be 20.71 ± 1.52 (Bq kg−1) for uranium-238 (H4, Thyme herb), 29.35 ± 1.33 (Bq kg−1) for thorium-232 (H20, Cinnamon), and 1181.2 ± 25.5 (Bq kg−1) for potassium-40 (H24, Worm-wood). (AACED) Ingestion-related effective doses over the course of a year of uranium-238 and thorium-232, as well as potassium-40 estimated from measured activity concentrations, are 0.002304 ± 0.00009 (minimum), 0.50869 ± 0.0002 (maximum), and 0.0373 ± 0.0004 (average)(mSv/yr). Radium equivalent activity (Raeq), annual gonadal dose equivalent (AGDE), absorbed gamma dose rate (Doutdoor, Dindoor), gamma representative level index (I), annual effective dose (AEDtotal), external and internal hazard index (Hex, Hin), and excess lifetime cancer risk were determined in medicinal plants (ELCR). The radiological hazards assessment revealed that the investigated plant species have natural radioactivity levels that are well within the internationally recommended limit. This is the first time that the natural radioactivity of therapeutic plants has been measured in Egypt. In addition, no artificial radionuclide (for example, 137Cs) was discovered in any of the samples. Therefore, the current findings are intended to serve as the foundation for establishing a standard safety and guideline for using these therapeutic plants in Egypt. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.PNURSP2022R173This work was funded by Princess Nourah bint, Abdulrahman University, Research Supporting Project number (PNURSP2022R173) Princess Nourah bint, Abdulrahman University, Riyadh, Saudi Arabia

    Anomalous Water Diffusion in Concrete Based on Neutron Backscattering Measurements

    No full text
    ABSTRACT This work presents a new method based on neutron backscatter measurements to study isothermal water flow and distribution in concretes. Ordinary concrete samples with different percentages of silica fume are used to study the water profiles

    Excitation function of proton induced nuclear reaction on strontium: Special relevance to the production of 88Y

    No full text
    Excitation functions were measured by the activation method using stacked-foil technique for the natSr (p,xn)88,87m,g,86m,gY reactions up to 18 MeV. The experimental results were compared with the theoretical data from EMPIRE-3.2 code and TENDL. Integral yields of 88,87m,g,86m,gY were estimated based on the measured cross sections. The optimum energy range for the production of the important isotope 88Y is Ep=16→11 MeV, 88Y yield amounts to about 3 MBq/μAh

    2 keV filters of quasi-mono-energetic neutrons

    No full text
    A simulation study for the production of 2 keV filters of quasi-mono-energetic neutrons based on the deep interference minima in the 45Sc total cross-section was carried out. A computer code QMENF-II was adapted to calculate the optimum amounts of the 45Sc as a main filter element and additional component ones to obtain sufficient intensity at high resolution and purity of the filtered quasi-mono-energetic neutrons. The emitted neutron spectrum from nuclear reactor and from the reaction of 2.6 MeV protons on a lithium fluoride target at the accelerator beam port, are used for simulation

    DFT Investigation of Structural and Electronic Properties of Modified PZT

    No full text
    Density of states and geometrical structures of modified Lead zirconate titanate are investigated using density functional theory within local density approximation. The electronic properties and bond length variation have been studied in terms of electronic structure and bonding mechanism principles respectively. Hybridization between Ti 3d - O 2p states and ferroelectric distortion have been addressed as a theoretical approach, to rule the improvement of ferroelectric properties of Lead zirconate titanate. The analysis of Ga, Tl modified Lead zirconate titanate were found to diminish the hybridization between Ti 3d - O 2p states, the relaxed behavior lead to the reversal of the known ferroelectric distortion. Y, Ho, Yb and Lu modified Lead zirconate titanate compounds have a tendency to intense the ferroelectric stability, its exhibit higher hybridization between Ti 3d - O 2p states than pure Lead zirconate titanate, also the arrangement of the ions distortions is strongly the same as the more favoured ferroelectric states of Lead zirconate titanate
    corecore