712 research outputs found

    Structure and properties of the stable two-dimensional conducting polymer Mg5C60

    Get PDF
    We present a study on the structural, spectroscopic, conducting, and magnetic properties of Mg5C60, which is a two-dimensional (2D) fulleride polymer. The polymer phase is stable up to the exceptionally high temperature of 823 K. The infrared and Raman studies suggest the formation of single bonds between the fulleride ions and possibly Mg-C-60 covalent bonds. Mg5C60 is a metal at ambient temperature, as shown by electron spin resonance and microwave conductivity measurements. The smooth transition from a metallic to a paramagnetic insulator state below 200 K is attributed to Anderson localization driven by structural disorder

    Low-frequency modes in the Raman spectrum of sp-sp2 nanostructured carbon

    Full text link
    A novel form of amorphous carbon with sp-sp2 hybridization has been recently produced by supersonic cluster beam deposition showing the presence in the film of both polyynic and cumulenic species [L. Ravagnan et al. Phys. Rev. Lett. 98, 216103 (2007)]. Here we present a in situ Raman characterization of the low frequency vibrational region (400-800 cm-1) of sp-sp2 films at different temperatures. We report the presence of two peaks at 450 cm-1 and 720 cm-1. The lower frequency peak shows an evolution with the variation of the sp content and it can be attributed, with the support of density functional theory (DFT) simulations, to bending modes of sp linear structures. The peak at 720 cm-1 does not vary with the sp content and it can be attributed to a feature in the vibrational density of states activated by the disorder of the sp2 phase.Comment: 15 pages, 5 figures, 1 tabl

    Basic and clinical significance of IGF-I-induced signatures in cancer

    Get PDF
    The insulin-like growth factor (IGF) system mediates growth, differentiation and developmental processes; it is also involved in various metabolic activities. Deregulation of IGF system expression and action is linked to diverse pathologies, ranging from growth deficits to cancer development. Targeting of the IGF axis emerged in recent years as a promising therapeutic approach in cancer and other medical conditions. Rational use of IGF-I-induced gene signatures may help to identify patients who might benefit from IGF axis-directed therapeutic modalities. In the accompanying research article in BMC Medicine, Rajski et al. show that IGF-I-induced gene expression in primary breast and lung fibroblasts accurately predict outcomes in breast and lung cancer patients

    IGF-I activates caspases 3/7, 8 and 9 but does not induce cell death in colorectal cancer cells

    Get PDF
    Background: Colorectal cancer is the third most common cancer in the western world. Chemotherapy is often ineffective to treat the advanced colorectal cancers due to the chemoresistance. A major contributor to chemo-resistance is tumour-derived inhibition or avoidance of apoptosis. Insulin-like growth factor I (IGF-I) has been known to play a prominent role in colorectal cancer development and progression. The role of IGF-I in cancer cell apoptosis is not completely understood.Methods: Using three colorectal cancer cell lines and one muscle cell line, associations between IGF-I and activities of caspase 3/7, 8 and 9 have been examined; the role of insulin-like growth factor I receptor (IGF-IR) in the caspase activation has been investigated.Results: The results show that exogenous IGF-I significantly increases activity of caspases 3/7, 8 and 9 in all cell lines used; blocking IGF-I receptor reduce IGF-I-induced caspase activation. Further studies demonstrate that IGF-I induced caspase activation does not result in cell death. This is the first report to show that while IGF-I activates caspases 3/7, 8 and 9 it does not cause colorectal cancer cell death.Conclusion: The study suggests that caspase activation is not synonymous with apoptosis and that activation of caspases may not necessarily induce cell death

    The Granulin/Epithelin Precursor Abrogates the Requirement for the Insulin-like Growth Factor 1 Receptor for Growth in Vitro

    Get PDF
    3T3 cells null for the type 1 insulin-like growth factor receptor are refractory to stimulation by a variety of purified growth factors that are known to be required for the stimulation of other 3T3 cells. However, these cells, known as R- cells, grow in serum-supplemented medium and also in media conditioned by certain cell lines. We report here the purification of a growth factor that stimulates DNA synthesis (and growth) of R- cells. The growth factor, purified to homogeneity by SDS-polyacrylamide gel electrophoresis, was identified as the granulin/epithelin precursor by an accurate determination of the masses of endoproteinase Lys-C peptides using matrix-assisted laser desorption ionization mass spectrometry, followed by a data base search. The granulin/epithelin precursor is a little known growth factor, secreted by a variety of epithelial and hemopoietic cells. It is at present the only purified growth factor that can stimulate the growth of mouse embryo fibroblasts null for the type 1 insulin-like growth factor receptor

    The granulin/epithelin precursor abrogates the requirement for the insulin-like growth factor I receptor for growth in vitro

    Get PDF
    3T3 cells null for the type 1 insulin-like growth factor receptor are refractory to stimulation by a variety of purified growth factors that are known to be required for the stimulation of other 3T3 cells. However, these cells, known as R- cells, grow in serum-supplemented medium and also in media conditioned by certain cell lines. We report here the purification of a growth factor that stimulates DNA synthesis (and growth) of R- cells. The growth factor, purified to homogeneity by SDS-polyacrylamide gel electrophoresis, was identified as the granulin/epithelin precursor by an accurate determination of the masses of endoproteinase Lys-C peptides using matrix-assisted laser desorption ionization mass spectrometry, followed by a data base search. The granulin/epithelin precursor is a little known growth factor, secreted by a variety of epithelial and hemopoietic cells. It is at present the only purified growth factor that can stimulate the growth of mouse embryo fibroblasts null for the type 1 insulin-like growth factor receptor

    Insulin Receptor Substrate-1, p70S6K and Cell Size in Transformation and Differentiation of Hemopoietic Cells.

    Get PDF
    After an initial burst of cell proliferation, the type 1 insulin-like growth factor receptor (IGF-IR) induces granulocytic differentiation of 32D IGF-IR cells, an interleukin-3-dependent murine hemopoietic cell line devoid of insulin receptor substrate-1 (IRS-1). The combined expression of the IGF-IR and IRS-1 (32D IGF-IR/IRS-1 cells) inhibits IGF-I-mediated differentiation, and causes malignant transformation of 32D cells. Because of the role of IRS-1 in changing the fate of 32D IGF-IR cells from differentiation (and subsequent cell death) to malignant transformation, we have looked for differences in IGF-IR signaling between 32D IGF-IR and 32D IGF-IR/IRS-1 cells. In this report, we have focused on p70(S6K), which is activated by the IRS-1 pathway. We find that the ectopic expression of IRS-1 and the inhibition of differentiation correlated with a sustained activation of p70(S6K) and an increase in cell size. Phosphorylation in vivo of threonine 389 and, to a lesser extent, of threonine 421/serine 424 of p70(S6K) seemed to be a requirement for inhibition of differentiation. A role of IRS-1 and p70(S6K) in the alternative between transformation or differentiation of 32D IGF-IR cells was confirmed by findings that inhibition of p70(S6K) activation or IRS-1 signaling, by rapamycin or okadaic acid, induced differentiation of 32D IGF-IR/IRS-1 cells. We have also found that the expression of myeloperoxidase mRNA (a marker of differentiation, which sharply increases in 32D IGF-IR cells), does not increase in 32D IGF-IR/IRS-1 cells, suggesting that the expression of IRS-1 in 32D IGF-IR cells causes the extinction of the differentiation program initiated by the IGF-IR, while leaving intact its proliferation program
    • …
    corecore