4,819 research outputs found

    Interagency telemetry arraying for Voyager-Neptune encounter

    Get PDF
    The reception capability of the Deep Space Network (DSN) has been improved over the years by increasing both the size and number of antennas at each complex to meet spacecraft-support requirements. However, even more aperture was required for the final planetary encounters of the Voyager 2 spacecraft. This need was met by arraying one radio astronomy observatory with the DSN complex in the United States and another with the complex in Australia. Following a review of augmentation for the Uranus encounter, both the preparation at the National Radio Astronomy (NRAO) Very Large Array (VLA) and the Neptune encounter results for the Parkes-Canberra and VLA-Goldstone arrays are presented

    Genomics goes chromosomal to explore the wheat genome

    Get PDF
    OBJECTIVES: The implant design and surface modification are independent conditions that can alter the implant bone response. The objective of this study is to compare the bone response to roughened tapered and cylindrical screw-type implants with and without hydroxyapatite (HA) surface coating in the femoral trabecular bone of rabbits. MATERIAL AND METHOD: Thirty-two implants (8 x 3.5 mm) consisting of four different types (eight implants in each group), that is, tapered implants, cylindrical implants, HA-coated tapered implants, and HA-coated cylindrical implants were installed in the femoral condyle of 16 rabbits. After 8 weeks of healing, the femoral condyles were retrieved and studied histologically. The bone-to-implant contact percentage was assessed and analyzed statistically. Results : The histomorphometric analysis revealed that the bone-to-implant contact (BIC) values seemed to be higher for HA-coated tapered implants (65.62 +/- 13.02) followed by cylindrical non-coated implants. All four types of implants showed wide distribution of BIC with no statistical significance between different types of implants. CONCLUSION: It can be concluded that under the current experimental conditions, implant design and surface composition had little effect on the bone-to-implant interface

    Recurrent Neutrino Emission from Supermassive Black Hole Mergers

    Full text link
    The recent detection of possible neutrino emission from the blazar TXS 0506+056 was the first high-energy neutrino associated with an astrophysical source, making this special type of active galaxies promising neutrino emitters. The fact that two distinct episodes of neutrino emission were detected with a separation of around 3 years suggests that emission could be periodic. Periodic emission is expected from supermassive binary black hole systems due to jet precession close to the binary's merger. Here we show that if TXS 0506+056 is a binary source then the next neutrino flare could occur before the end of 2021. We derive the binary properties that would lead to the detection of gravitational waves from this system by LISA. Our results for the first time quantify the time scale of these correlations for the example of TXS 0506+056, providing clear predictions for both the neutrino and gravitational-wave signatures of such sources.Comment: 6 pages, 3 figures, submitte

    Supercooled Liquid Dynamics Studied via Shear-Mechanical Spectroscopy

    Full text link
    We report dynamical shear-modulus measurements for five glass-forming liquids (pentaphenyl trimethyl trisiloxane, diethyl phthalate, dibutyl phthalate, 1,2-propanediol, and m-touluidine). The shear-mechanical spectra are obtained by the piezoelectric shear-modulus gauge (PSG) method. This technique allows one to measure the shear modulus (105101010^{5} -10^{10} Pa) of the liquid within a frequency range from 1 mHz to 10 kHz. We analyze the frequency-dependent response functions to investigate whether time-temperature superposition (TTS) is obeyed. We also study the shear-modulus loss-peak position and its high-frequency part. It has been suggested that when TTS applies, the high-frequency side of the imaginary part of the dielectric response decreases like a power law of the frequency with an exponent -1/2. This conjecture is analyzed on the basis of the shear mechanical data. We find that TTS is obeyed for pentaphenyl trimethyl trisiloxane and in 1,2-propanediol while in the remaining liquids evidence of a mechanical β\beta process is found. Although the the high-frequency power law behavior ωα\omega^{-\alpha} of the shear-loss may approach a limiting value of α=0.5\alpha=0.5 when lowering the temperature, we find that the exponent lies systematically above this value (around 0.4). For the two liquids without beta relaxation (pentaphenyl trimethyl trisiloxane and 1,2-propanediol) we also test the shoving model prediction, according to which the the relaxation-time activation energy is proportional to the instantaneous shear modulus. We find that the data are well described by this model.Comment: 7 pages, 6 figure

    Neurino Cadence of TXS~0506+056 Consistent with Supermassive Binary Origin

    Full text link
    On September 18, 2022, an alert by ceCube indicated that a ~170TeV neutrino arrived in directional coincidence with the blazar TXS 0506+056. This event adds to two previous ones: a neutrino alert from its direction on September 22, 2017, and a 3sigma signature of a dozen neutrinos in 2014/2015. deBruijn 2020 showed that these two previous neutrino emission episodes could be due to a supermassive binary black hole (SMBBH) where jet precession close to final coalescence results in periodic emission. This model predicted a new emission episode consistent with the September 18, 2022 neutrino observation. Here, we show that the neutrino cadence of TXS 0506+056 is consistent with a SMBBH origin with mass ratios q3e8Msun. For the first time, we calculate the characteristic strain of the gravitational wave emission of the binary, and show that the merger could be detectable by LISA for black hole masses <5e8Msun if the mass ratios are in the range 0.1<q<0.3. We predict that there can be a neutrino flare existing in the still to be analyzed IceCube data peaking some time between 08/2019 and 01/2021 if a precessing jet is responsible for all three detected emission episodes. The next flare is expected to peak in the period 01/2023 to 08/2026. Further observation will make it possible to constrain the mass ratio as a function of the black hole mass more precisely and would open the window toward the preparation of the detection of SMBBH mergers.Comment: 10 pages, 2 figures, submitte
    corecore