15 research outputs found

    Domain-Specific Automatic Programming

    No full text

    An inverted taxonomy of sorting algorithms

    No full text

    Relationship between bicarbonate retention and bone characteristics in broiler chickens

    No full text
    Determination of the bicarbonate retention factor (BRF) is an important step during development of the indicator amino acid oxidation technique for use in a new model. A series of 4-h oxidation experiments were performed to determine the BRF of broilers aged 7, 14, 21, 28, 35, and 42 d using 4 birds per age group. A priming dose of 1.2 mu Ci of (NaHCO3)-C-14, followed by eight half-hourly doses of 1 mu Ci of (NaHCO3)-C-14 were given orally to each of 4 birds per age. The percentage of 14 C dose expired by the bird at a steady state was measured. These birds, as well as 12 additional birds matched for age and BW, were killed, and femur bone mineral density was measured by quantitative computed tomography to determine the relationship between bone development and bicarbonate retention at each age. There was a correlation (r = 0.50; P < 0.05) between total cross-sectional femur bone mineral density and bicarbonate retention at each age. A prediction equation (Y = 6.95 x 10(-2) X - 3.51 x 10(5)X(2) + 27.58; P < 0.0001, R-2 = 0.79) where Y = bicarbonate retention and X = BW was generated to predict Y as a function of X. Bicarbonate retention values peaked at 28 d, during the stage of the most rapid bone deposition and the highest growth rate. A constant BRF was found from 1,900 to 2,700 g of BW of 35.15 +/- 1.095% (mean SEM). This retention factor will allow the accurate correction of oxidation of C-14-labeled substrates in broilers of different ages and BW in future indicator amino acid oxidation studies

    A Framework for Prioritizing the TESS Planetary Candidates Most Amenable to Atmospheric Characterization

    Get PDF
    A key legacy of the recently launched the Transiting Exoplanet Survey Satellite (TESS) mission will be to provide the astronomical community with many of the best transiting exoplanet targets for atmospheric characterization. However, time is of the essence to take full advantage of this opportunity. The James Webb Space Telescope (JWST), although delayed, will still complete its nominal five year mission on a timeline that motivates rapid identification, confirmation, and mass measurement of the top atmospheric characterization targets from TESS. Beyond JWST, future dedicated missions for atmospheric studies such as the Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL) require the discovery and confirmation of several hundred additional sub-Jovian size planets (R p < 10 R ⊕) orbiting bright stars, beyond those known today, to ensure a successful statistical census of exoplanet atmospheres. Ground-based extremely large telescopes (ELTs) will also contribute to surveying the atmospheres of the transiting planets discovered by TESS. Here we present a set of two straightforward analytic metrics, quantifying the expected signal-to-noise in transmission and thermal emission spectroscopy for a given planet, that will allow the top atmospheric characterization targets to be readily identified among the TESS planet candidates. Targets that meet our proposed threshold values for these metrics would be encouraged for rapid follow-up and confirmation via radial velocity mass measurements. Based on the catalog of simulated TESS detections by Sullivan et al., we determine appropriate cutoff values of the metrics, such that the TESS mission will ultimately yield a sample of ~300 high-quality atmospheric characterization targets across a range of planet size bins, extending down to Earth-size, potentially habitable worlds

    A Framework for Prioritizing the TESS Planetary Candidates Most Amenable to Atmospheric Characterization

    Get PDF
    A key legacy of the recently launched the Transiting Exoplanet Survey Satellite (TESS) mission will be to provide the astronomical community with many of the best transiting exoplanet targets for atmospheric characterization. However, time is of the essence to take full advantage of this opportunity. The James Webb Space Telescope (JWST), although delayed, will still complete its nominal five year mission on a timeline that motivates rapid identification, confirmation, and mass measurement of the top atmospheric characterization targets from TESS. Beyond JWST, future dedicated missions for atmospheric studies such as the Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL) require the discovery and confirmation of several hundred additional sub-Jovian size planets (R p < 10 R ⊕) orbiting bright stars, beyond those known today, to ensure a successful statistical census of exoplanet atmospheres. Ground-based extremely large telescopes (ELTs) will also contribute to surveying the atmospheres of the transiting planets discovered by TESS. Here we present a set of two straightforward analytic metrics, quantifying the expected signal-to-noise in transmission and thermal emission spectroscopy for a given planet, that will allow the top atmospheric characterization targets to be readily identified among the TESS planet candidates. Targets that meet our proposed threshold values for these metrics would be encouraged for rapid follow-up and confirmation via radial velocity mass measurements. Based on the catalog of simulated TESS detections by Sullivan et al., we determine appropriate cutoff values of the metrics, such that the TESS mission will ultimately yield a sample of ~300 high-quality atmospheric characterization targets across a range of planet size bins, extending down to Earth-size, potentially habitable worlds
    corecore