1,966 research outputs found

    Purine and Pyrimidine Salvage in Whole Rat Brain. Utilization of ATP-derived Ribose-1-Phosphate and 5-Phosphoribosyl-1-pyrophosphate Generated in Experiments with Dialyzed Cell-free Extracts

    Get PDF
    The object of this work stems from our previous studies on the mechanisms responsible of ribose-1-phosphate- and 5-phosphoribosyl-1-pyrophosphate-mediated nucleobase salvage and 5-fluorouracil activation in rat brain (Mascia, L., Cappiello M., Cherri, S., and Ipata, P. L. (2000) Biochim. Biophys. Acta 1474, 70-74; Mascia, L., Cotrufo, T., Cappiello, M., and Ipata, P. L. (1999) Biochim. Biophys. Acta 1472, 93-98). Here we show that when ATP at "physiological concentration" is added to dialyzed extracts of rat brain in the presence of natural nucleobases or 5-fluorouracil, adenine-, hypoxanthine-, guanine-, uracil-, and 5-fluorouracil-ribonucleotides are synthesized. The molecular mechanism of this peculiar nueleotide synthesis relies on the capacity of rat brain to salvage purine and pyrimidine bases by deriving ribose-1-phosphate and 5-phosphoribosyl-1-pyrophosphate from ATP even in the absence of added pentose or pentose phosphates. The levels of the two sugar phosphates formed are compatible with those of synthesized nucleotides. We propose that the ATP-mediated 5-phosphoribosyl-1-pyrophosphate synthesis occurs through the action of purine nucleoside phosphorylase, phosphopentomutase, and 5-phosphoribosyl-1-pyrophosphate synthetase. Furthering our previous observations on the effect of ATP in the 5-phosphoribosyl-1-pyrophosphate-mediated 5-fluorouracil activation in rat liver (Mascia, L., and Ipata, P. L. (2001) Biochem. Pharmacol. 62, 213-218), we now show that the ratio [5-phosphoribosyl-1-pyrophosphate]/[ATP] plays a major role in modulating adenine salvage in rat brain. On the basis of our in vitro results, we suggest that massive ATP degradation, as it occurs in brain during ischemia, might lead to an increase of the intracellular 5-phosphoribosyl-1-pyrophosphate and ribose-1-phosphate pools, to be utilized for nucleotide resynthesis during reperfusion

    A randomized clinical control study on the efficacy of three-dimensional upper limb robotic exoskeleton training in chronic stroke

    Get PDF
    Background : Although robotics assisted rehabilitation has proven to be effective in stroke rehabilitation, a limited functional improvements in Activities of Daily Life has been also observed after the administration of robotic training. To this aim in this study we compare the efficacy in terms of both clinical and functional outcomes of a robotic training performed with a multi-joint functional exoskeleton in goal-oriented exercises compared to a conventional physical therapy program, equally matched in terms of intensity and time. As a secondary goal of the study, it was assessed the capability of kinesiologic measurements—extracted by the exoskeleton robotic system—of predicting the rehabilitation outcomes using a set of robotic biomarkers collected at the baseline. Methods : A parallel-group randomized clinical trial was conducted within a group of 26 chronic post-stroke patients. Patients were randomly assigned to two groups receiving robotic or manual therapy. The primary outcome was the change in score on the upper extremity section of the Fugl-Meyer Assessment (FMA) scale. As secondary outcome a specifically designed bimanual functional scale, Bimanual Activity Test (BAT), was used for upper limb functional evaluation. Two robotic performance indices were extracted with the purpose of monitoring the recovery process and investigating the interrelationship between pre-treatment robotic biomarkers and post-treatment clinical improvement in the robotic group. Results : A significant clinical and functional improvements in both groups (p < 0.01) was reported. More in detail a significantly higher improvement of the robotic group was observed in the proximal portion of the FMA (p < 0.05) and in the reduction of time needed for accomplishing the tasks of the BAT (p < 0.01). The multilinear-regression analysis pointed out a significant correlation between robotic biomarkers at the baseline and change in FMA score (R2 = 0.91, p < 0.05), suggesting their potential ability of predicting clinical outcomes. Conclusion : Exoskeleton-based robotic upper limb treatment might lead to better functional outcomes, if compared to manual physical therapy. The extracted robotic performance could represent predictive indices of the recovery of the upper limb. These results are promising for their potential exploitation in implementing personalized robotic therapy. Clinical Trial Registration clinicaltrials.gov, NCT03319992 Unique Protocol ID: RH-UL-LEXOS-10. Registered 20.10.2017, https://clinicaltrials.gov/ct2/show/NCT0331999

    Effects of rocuronium bromide on globe position and respiratory function in isoflurane-anesthetized dogs: a comparison between three different dosages.

    Get PDF
    Objective To evaluate the effect on globe position and respiration of three dosages of intravenous rocuronium in isoflurane-anesthetized dogs. Animal studied Thirty-two dogs anesthetized for ophthalmic procedures. Procedures The dogs were divided into four groups, each of eight animals (G1-G4). G1, G2, G3 received 0.075, 0.05, 0.03 mg/kg of IV rocuronium, respectively; G4 received 0.9% NaCl IV; all the treatments were administered when an end-tidal isoflurane of 1.1–1.2% was reached. Anesthesia was obtained with dexmedetomidine (2.5 mcg/kg IV), methadone (0.1 mg/kg IV), propofol (2 mg/kg IV), and isoflurane in oxygen. Neuromuscular function was assessed with acceleromyography by stimulation of the peroneal nerve using the train-of-four (ToF) and the ToF ratio (ToFR). Monitoring of cardiovascular and respiratory functions was performed. Changes in globe position were recorded. Results All three dosages of rocuronium produced centralization of the globe. Duration was 24.3 ± 4.2, 23.4 ± 3.6, and 8.7 ± 2.8 min, for G1, G2, and G3, respectively. The control group did not show globe centralization. No significant differences were found among the four groups in cardiovascular and respiratory parameters. Minute volume and ToFR were significantly lower in G1 compared with baseline values. Conclusions All doses of rocuronium resulted in globe centralization. The higher dose provoked a transient respiratory depression and some degree of skeletal muscular blockade detectable with ToFR. No alterations in respiratory activity were present when 0.05 mg/kg was used. The 0.03 mg/kg dosage could be useful for very short ophthalmic procedures

    Extended model for the interaction of dielectric thin films with an electrostatic force microscope probe

    Get PDF
    To improve measurements of the dielectric permittivity of nanometric portions by means of Local Dielectric Spectroscopy (LDS), we introduce an extension to current analytical models for the interpretation of the interaction between the probe tip of an electrostatic force microscope (EFM) and a thin dielectric film covering a conducting substrate. Using the proposed models, we show how more accurate values for the dielectric constant can be obtained from single-frequency measurements at various probe/substrate distances, not limited to a few tip radii

    Food intake and nutritional status in stable hemodialysis patients.

    Get PDF
    evaluate changes of actual dietary nutrient intake in 94 stable hemodialysis patients in respect to 52 normal subjects and guideline recommendations, and to assess the prevalence of signs of malnutrition. Energy and nutrients intake assessment was obtained by a three-day period food recall. Anthropometric and biochemical parameters of nutrition, bioelectric impedance vector analysis, and subjective global assessment (SGA) have been performed to assess nutritional status. SGA-B was scored in 5% of the patients. Body mass index < 20 Kg/m2, serum albumin <35 g/L, nPNA < 1.0 g/Kg, and phase angle <4.0° were detected in 16.3%, 16%, 23%, and 8.0 % of patients, respectively. HD patients showed a lower energy and protein intake in respect to controls, but no difference occurred when normalized per ideal body weight (29.3 ± 8.4 vs. 29.5 ± 8.4 Kcal/Kg i.b.w./d and 1.08 ± 0.35 vs. 1.12 ± 0.32 Kcal/Kg i.b.w. /d, respectively). Age was the only parameter that inversely correlates with energy (r = −0.35, p < 0.001) and protein intake (r = −0.34, p < 0.001). This study shows that in stable dialysis patients, abnormalities of nutritional parameters are less prevalent than expected by analysis of dietary food intake. Age is the best predictor of energy and protein intake in the dialysis patients who ate less than normal people, but no difference emerged when energy and protein intakes were normalized for body weight. These results recall the attention for individual dietetic counseling in HD patients, and also for a critical re-evaluation of their dietary protein and energy requirements

    Imaging, Structural and Chemical Analysis of Silicon Nanowires

    Get PDF
    Laser ablation has been used to grow silicon nanowires with an average diameter of 6.7 nm ± 2.7 nm surrounded by an amorphous SiOx sheath of 1-2 nm. This paper reports the imaging, chemical and structural analysis of these wires. Due to the growth temperature and the presence of calcium impurities and trace oxygen, two distinct types of wires are found. They appear to grow by two different processes. One requires a metal catalyst, the other is catalyzed by oxygen

    Frequency-Dependent Squeezing for Advanced LIGO

    Get PDF
    The first detection of gravitational waves by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 launched the era of gravitational wave astronomy. The quest for gravitational wave signals from objects that are fainter or farther away impels technological advances to realize ever more sensitive detectors. Since 2019, one advanced technique, the injection of squeezed states of light is being used to improve the shot noise limit to the sensitivity of the Advanced LIGO detectors, at frequencies above ∼50\sim 50 Hz. Below this frequency, quantum back action, in the form of radiation pressure induced motion of the mirrors, degrades the sensitivity. To simultaneously reduce shot noise at high frequencies and quantum radiation pressure noise at low frequencies requires a quantum noise filter cavity with low optical losses to rotate the squeezed quadrature as a function of frequency. We report on the observation of frequency-dependent squeezed quadrature rotation with rotation frequency of 30Hz, using a 16m long filter cavity. A novel control scheme is developed for this frequency-dependent squeezed vacuum source, and the results presented here demonstrate that a low-loss filter cavity can achieve the squeezed quadrature rotation necessary for the next planned upgrade to Advanced LIGO, known as "A+."Comment: 6 pages, 2 figures, to be published in Phys. Rev. Let

    Recent advances in structure and function of cytosolic IMP-GMP specific 5′nucleotidase II (cN-II)

    Get PDF
    Cytosolic 5′nucleotidase II (cN-II) catalyses both the hydrolysis of a number of nucleoside monophosphates (e.g., IMP + H2O→inosine + Pi), and the phosphate transfer from a nucleoside monophosphate donor to the 5′position of a nucleoside acceptor (e.g., IMP + guanosine →inosine + GMP). The enzyme protein functions through the formation of a covalent phosphoenzyme intermediate, followed by the phosphate transfer either to water (phosphatase activity) or to a nucleoside (phosphotransferase activity). It has been proposed that cN-II regulates the intracellular concentration of IMP and GMP and the production of uric acid. The enzyme might also have a potential therapeutic importance, since it can phosphorylate some anti-tumoral and antiviral nucleoside analogues that are not substrates of known kinases. In this review we summarise our recent studies on the structure, regulation and function of cN-II. Via a site-directed mutagenesis approach, we have identified the amino acids involved in the catalytic mechanism and proposed a structural model of the active site. A series of in vitro studies suggests that cN-II might contribute to the regulation of 5-phosphoribosyl-1-pyrophosphate (PRPP) level, through the so-called oxypurine cycle, and in the production of intracellular adenosine, formed by ATP degradation

    Adapting Real Quantifier Elimination Methods for Conflict Set Computation

    Get PDF
    The satisfiability problem in real closed fields is decidable. In the context of satisfiability modulo theories, the problem restricted to conjunctive sets of literals, that is, sets of polynomial constraints, is of particular importance. One of the central problems is the computation of good explanations of the unsatisfiability of such sets, i.e.\ obtaining a small subset of the input constraints whose conjunction is already unsatisfiable. We adapt two commonly used real quantifier elimination methods, cylindrical algebraic decomposition and virtual substitution, to provide such conflict sets and demonstrate the performance of our method in practice
    • …
    corecore