8,105 research outputs found

    SOPHIE velocimetry of Kepler transit candidates VI. An additional companion in the KOI-13 system

    Full text link
    We report the discovery of a new stellar companion in the KOI-13 system. KOI-13 is composed by two fast-rotating A-type stars of similar magnitude. One of these two stars hosts a transiting planet discovered by Kepler. We obtained new radial velocity measurements using the SOPHIE spectrograph at the Observatoire de Haute-Provence that revealed an additional companion in this system. This companion has a mass between 0.4 and 1 Msun and orbits one of the two main stars with a period of 65.831 \pm 0.029 days and an eccentricity of 0.52 \pm 0.02. The radial velocities of the two stars were derived using a model of two fast-rotating line profiles. From the residuals, we found a hint of the stellar variations seen in the Kepler light curve with an amplitude of about 1.41 km/s and a period close to the rotational period. This signal appears to be about three order of magnitude larger than expected for stellar activity. From the analysis of the residuals, we also put a 3-sigma upper-limit on the mass of the transiting planet KOI-13.01 of 14.8 Mjup and 9.4 Mjup, depending on which star hosts the transit. We found that this new companion has no significant impact on the photometric determination of the mass of KOI-13.01 but is expected to affect precise infrared photometry. Finally, using dynamical simulations, we infer that the new companion is orbiting around KOI-13B while the transiting planet candidate is expected to orbit KOI-13A. Thus, the transiting planet candidate KOI-13.01 is orbiting the main component of a hierarchical triple system.Comment: Accepted in A&A Letters. 4 pages including 4 figures and the RV tabl

    Impacto Econômico da Neosporose no Sistema Produtivo de Gado de Corte no Estado de Mato Grosso do Sul.

    Get PDF
    bitstream/item/109939/1/DOC201.pd

    SOPHIE velocimetry of Kepler transit candidates IX. KOI-415 b: a long-period, eccentric transiting brown dwarf to an evolved Sun

    Full text link
    We report the discovery of a long-period brown-dwarf transiting companion of the solar-type star KOI-415. The transits were detected by the Kepler space telescope. We conducted Doppler measurements using the SOPHIE spectrograph at the Observatoire de Haute-Provence. The photometric and spectroscopic signals allow us to characterize a 62.14+-2.69 Mjup, brown-dwarf companion of an evolved 0.94+-0.06 Msun star in a highly eccentric orbit of P = 166.78805+-0.00022 days and e = 0.698+-0.002. The radius of KOI-415 b is 0.79 (-0.07,+0.12) Rjup, a value that is compatible with theoretical predictions for a 10 Gyr, low-metallicity and non-irradiated object.Comment: accepted in A&A Letter

    SOPHIE velocimetry of Kepler transit candidates XIV. A joint photometric, spectroscopic, and dynamical analysis of the Kepler-117 system

    Full text link
    As part of our follow-up campaign of Kepler planets, we observed Kepler-117 with the SOPHIE spectrograph at the Observatoire de Haute-Provence. This F8-type star hosts two transiting planets in non-resonant orbits. The planets, Kepler-117 b and c, have orbital periods 18.8\simeq 18.8 and 50.8\simeq 50.8 days, and show transit-timing variations (TTVs) of several minutes. We performed a combined Markov chain Monte Carlo (MCMC) fit on transits, radial velocities, and stellar parameters to constrain the characteristics of the system. We included the fit of the TTVs in the MCMC by modeling them with dynamical simulations. In this way, consistent posterior distributions were drawn for the system parameters. According to our analysis, planets b and c have notably different masses (0.094±0.0330.094 \pm 0.033 and 1.84±0.181.84 \pm 0.18 MJ_{\rm J}) and low orbital eccentricities (0.0493±0.00620.0493 \pm 0.0062 and 0.0323±0.00330.0323 \pm 0.0033). The uncertainties on the derived parameters are strongly reduced if the fit of the TTVs is included in the combined MCMC. The TTVs allow measuring the mass of planet b, although its radial velocity amplitude is poorly constrained. Finally, we checked that the best solution is dynamically stable.Comment: 16 pages, of whom 5 of online material.12 figures, of whom 2 in the online material. 7 tables, of whom 4 in the online material. Published in A&

    Characterization of the four new transiting planets KOI-188b, KOI-195b, KOI-192b, and KOI-830b

    Full text link
    The characterization of four new transiting extrasolar planets is presented here. KOI-188b and KOI-195b are bloated hot Saturns, with orbital periods of 3.8 and 3.2 days, and masses of 0.25 and 0.34 M_Jup. They are located in the low-mass range of known transiting, giant planets. KOI-192b has a similar mass (0.29 M_Jup) but a longer orbital period of 10.3 days. This places it in a domain where only a few planets are known. KOI-830b, finally, with a mass of 1.27 M_Jup and a period of 3.5 days, is a typical hot Jupiter. The four planets have radii of 0.98, 1.09, 1.2, and 1.08 R_Jup, respectively. We detected no significant eccentricity in any of the systems, while the accuracy of our data does not rule out possible moderate eccentricities. The four objects were first identified by the Kepler Team as promising candidates from the photometry of the Kepler satellite. We establish here their planetary nature thanks to the radial velocity follow-up we secured with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. The combined analyses of the datasets allow us to fully characterize the four planetary systems. These new objects increase the number of well-characterized exoplanets for statistics, and provide new targets for individual follow-up studies. The pre-screening we performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence as part of that study also allowed us to conclude that a fifth candidate, KOI-219.01, is not a planet but is instead a false positive.Comment: 13 pages, 4 figures, 6 tables, final version accepted for publication in A&

    SOPHIE velocimetry of Kepler transit candidates XI. Kepler-412 system: probing the properties of a new inflated hot Jupiter

    Full text link
    We confirm the planetary nature of Kepler-412b, listed as planet candidate KOI-202 in the Kepler catalog, thanks to our radial velocity follow-up program of Kepler-released planet candidates, which is on going with the SOPHIE spectrograph. We performed a complete analysis of the system by combining the Kepler observations from Q1 to Q15, to ground-based spectroscopic observations that allowed us to derive radial velocity measurements, together with the host star parameters and properties. We also analyzed the light curve to derive the star's rotation period and the phase function of the planet, including the secondary eclipse. We found the planet has a mass of 0.939 ±\pm 0.085 MJup_{Jup} and a radius of 1.325 ±\pm 0.043 RJup_{Jup} which makes it a member of the bloated giant subgroup. It orbits its G3 V host star in 1.72 days. The system has an isochronal age of 5.1 Gyr, consistent with its moderate stellar activity as observed in the Kepler light curve and the rotation of the star of 17.2 ±\pm 1.6 days. From the detected secondary, we derived the day side temperature as a function of the geometric albedo and estimated the geometrical albedo, Ag, is in the range 0.094 to 0.013. The measured night side flux corresponds to a night side brightness temperature of 2154 ±\pm 83 K, much greater than what is expected for a planet with homogeneous heat redistribution. From the comparison to star and planet evolution models, we found that dissipation should operate in the deep interior of the planet. This modeling also shows that despite its inflated radius, the planet presents a noticeable amount of heavy elements, which accounts for a mass fraction of 0.11 ±\pm 0.04.Comment: 11 pages, 9 figure

    SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: a massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars

    Full text link
    We report the validation and characterization of three new transiting exoplanets using SOPHIE radial velocities: KOI-614b, KOI-206b, and KOI-680b. KOI-614b has a mass of 2.86±0.35 MJup2.86\pm0.35~{\rm M_{Jup}} and a radius of 1.130.18+0.26 RJup1.13^{+0.26}_{-0.18}~{\rm R_{Jup}}, and it orbits a G0, metallic ([Fe/H]=0.35±0.150.35\pm0.15) dwarf in 12.9 days. Its mass and radius are familiar and compatible with standard planetary evolution models, so it is one of the few known transiting planets in this mass range to have an orbital period over ten days. With an equilibrium temperature of Teq=1000±45T_{eq}=1000 \pm 45 K, this places KOI-614b at the transition between what is usually referred to as "hot" and "warm" Jupiters. KOI-206b has a mass of 2.82±0.52 MJup2.82\pm 0.52~{\rm M_{Jup}} and a radius of 1.45±0.16 RJup1.45\pm0.16~{\rm R_{Jup}}, and it orbits a slightly evolved F7-type star in a 5.3-day orbit. It is a massive inflated hot Jupiter that is particularly challenging for planetary models because it requires unusually large amounts of additional dissipated energy in the planet. On the other hand, KOI-680b has a much lower mass of 0.84±0.15 MJup0.84\pm0.15~{\rm M_{Jup}} and requires less extra-dissipation to explain its uncommonly large radius of 1.99±0.18 RJup1.99\pm0.18~{\rm R_{Jup}}. It is one of the biggest transiting planets characterized so far, and it orbits a subgiant F9-star well on its way to the red giant stage, with an orbital period of 8.6 days. With host stars of masses of 1.46±0.17 M1.46\pm0.17~M_{\odot} and 1.54±0.09 M1.54 \pm 0.09~M_{\odot}, respectively, KOI-206b, and KOI-680b are interesting objects for theories of formation and survival of short-period planets around stars more massive than the Sun. For those two targets, we also find signs of a possible distant additional companion in the system

    Diagnóstico ambiental do município de Santana do Ipanema, Alagoas.

    Get PDF
    bitstream/CNPS-2010/14878/1/bpd76-2005-santana-ipanema.pd

    Análise comparativa entre dados TRMM e SPOT-VGT para o território brasileiro.

    Get PDF
    O presente trabalho teve por objetivo fazer uma análise comparativa entre dados de precipitação mensal obtidos pelo satélite TRMM e dados de índice de vegetação do satélite SPOT-VGT a fim de identificar correspondências entre as imagens. Foram utilizados dados de IVP (índice de vegetação padronizado) com 1 km de resolução espacial e resolução temporal de dez dias, obtidos a partir do sistema operado pela Embrapa Monitoramento por Satélite, e dados de precipitação mensal com resolução espacial de aproximadamente 25 km no período de janeiro de 1998 a março de 2012, do satélite TRMM, produto 3B43. As imagens apresentaram relações mais fortes quando referentes a períodos de estiagem. A resposta do IVP foi condizente quando baixos índices de precipitação foram identificados, porém onde os índices de precipitação foram altos, muitas vezes o IVP foi subestimado. Este resultado foi obtido pois a maior ocorrência de nuvens gera contaminações nas imagens SPOT e prejudica a estimativa dos índices de vegetação. Outro fator que dificultou as comparações foram as diferenças na resolução espacial e temporal entre ambos produtos
    corecore