249 research outputs found
TTF-1/p63-positive poorly differentiated NSCLC: A histogenetic hypothesis from the basal reserve cell of the terminal respiratory unit
TTF-1 is expressed in the alveolar epithelium and in the basal cells of distal terminal bronchioles. It is considered the most sensitive and specific marker to define the adenocarcinoma arising from the terminal respiratory unit (TRU). TTF-1, CK7, CK5/6, p63 and p40 are useful for typifying the majority of non-small-cell lung cancers, with TTF and CK7 being typically expressed in adenocarcinomas and the latter three being expressed in squamous cell carcinoma. As tumors with coexpression of both TTF-1 and p63 in the same cells are rare, we describe different cases that coexpress them, suggesting a histogenetic hypothesis of their origin. We report 10 cases of poorly differentiated non-small-cell lung carcinoma (PD-NSCLC). Immunohistochemistry was performed by using TTF-1, p63, p40 (âNp63), CK5/6 and CK7. EGFR and BRAF gene mutational analysis was performed by using real-time PCR. All the cases showed coexpression of p63 and TTF-1. Six of them showing CK7+ and CK5/6â immunostaining were diagnosed as âTTF-1+ p63+ adenocarcinomaâ. The other cases of PD-NSCLC, despite the positivity for CK5/6, were diagnosed as âadenocarcinoma, solid variantâ, in keeping with the presence of TTF-1 expression and p40 negativity. A âwild typeâ genotype of EGFR was evidenced in all cases. TTF1 stained positively the alveolar epithelium and the basal reserve cells of TRU, with the latter also being positive for p63. The coexpression of p63 and TTF-1 could suggest the origin from the basal reserve cells of TRU and represent the capability to differentiate towards different histogenetic lines. More aggressive clinical and morphological features could characterize these âbasal-type tumorsâ like those in the better known âbasal-likeâ cancer of the breast
Equilibrium hydrostatic equation and Newtonian limit of the singular f(R) gravity
We derive the equilibrium hydrostatic equation of a spherical star for any
gravitational Lagrangian density of the form . The Palatini
variational principle for the Helmholtz Lagrangian in the Einstein gauge is
used to obtain the field equations in this gauge. The equilibrium hydrostatic
equation is obtained and is used to study the Newtonian limit for
. The same procedure is carried out for the more
generally case giving a good
Newtonian limit.Comment: Revised version, to appear in Classical and Quantum Gravity
Vino e Ambiente: sostenibilitĂ e qualitĂ primaria nel sottobacino Iudeo-Bucari (TP).
In questa raccolta di scritti, vengono riportati i risultati dellâattivitĂ di ricerca realizzata con la collaborazione della cantina UVAM e dellâIstituto Regionale Vino e Olio di Sicili
Nintedanib in NSCLC: Evidence to date and place in therapy
The treatment of advanced non-small cell lung cancer (NSCLC) is currently driven by the detection of targetable oncogenic drivers, i.e. epidermal growth factor receptor, echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase, etc. Those patients who are wildtype for known and valuable oncogenes can receive standard chemotherapy as first-line treatment, with the possibility of adding bevacizumab. With regard to second-line treatment, nintedanib can improve the efficacy of docetaxel. Nintedanib is a tyrosine kinase inhibitor targeting three angiogenesis-related transmembrane receptors. The usefulness of nintedanib as an anticancer agent for NSCLC has been proved by both preclinical and clinical phase I and II trials; however, its approval for the use in clinical practice has been possible because of the positive results of the LUME-Lung 1 trial (nintedanib + docetaxel versus docetaxel alone) in terms of progression-free survival and overall survival, and a manageable tolerability profile. Therefore, the good results seen in the clinical trials with nintedanib in the second-line setting for NSCLC patients with adenocarcinoma subtype are encouraging enough to recommend it in clinical practice
- âŠ