10,181 research outputs found

    Crystallization, data collection and data processing of maltose-binding protein (MalE) from the phytopathogen Xanthomonas axonopodis pv. citri

    Get PDF
    Maltose-binding protein is the periplasmic component of the ABC transporter responsible for the uptake of maltose/maltodextrins. The Xanthomonas axonopodis pv. citri maltose-binding protein MalE has been crystallized at 293 Kusing the hanging-drop vapour-diffusion method. The crystal belonged to the primitive hexagonal space group P6_122, with unit-cell parameters a = 123.59, b = 123.59, c = 304.20 Ã…, and contained two molecules in the asymetric unit. It diffracted to 2.24 Ã… resolution

    Liquid Polymorphism and Density Anomaly in a Lattice Gas Model

    Full text link
    We present a simple model for an associating liquid in which polymorphism and density anomaly are connected. Our model combines a two dimensional lattice gas with particles interacting through a soft core potential and orientational degrees of freedom represented through thermal \char`\"{}ice variables\char`\"{} . The competition between the directional attractive forces and the soft core potential leads to a phase diagram in which two liquid phases and a density anomaly are present. The coexistence line between the low density liquid and the high density liquid has a positive slope contradicting the surmise that the presence of a density anomaly implies that the high density liquid is more entropic than the low density liquid

    The Stellar Content of Obscured Galactic Giant HII Regions. VI: W51A

    Full text link
    We present K-band spectra of newly born OB stars in the obscured Galactic giant H II region W51A and ~ 0.8'' angular resolution images in the J, H and K_S-bands. Four objects have been spectroscopically classified as O-type stars. The mean spectroscopic parallax of the four stars gives a distance of 2.0 \pm 0.3 kpc (error in the mean), significantly smaller than the radio recombination line kinematic value of 5.5 kpc or the values derived from maser propermotion observations (6--8 kpc). The number of Lyman continuum photons from the contribution of all massive stars (NLyc ~ 1.5 x 10^{50} s^{-1}) is in good agreement with that inferred from radio recombination lines (NLyc = 1.3 x 10^{50} s^{-1}) after accounting for the smaller distance derived here. We present analysis of archival high angular resolution images (NAOS CONICA at VLT and T-ReCS at Gemini) of the compact region W51 IRS2. The K_S--band images resolve the infrared source IRS~2 indicating that it is a very young compact HII region. Sources IRS2E was resolved into compact cluster (within 660 AU of projected distance) of 3 objects, but one of them is just bright extended emission. W51d1 and W51d2 were identified with compact clusters of 3 objects (maybe 4 in the case of W51d1) each one. Although IRS~2E is the brightest source in the K-band and at 12.6 \micron, it is not clearly associated with a radio continuum source. Our spectrum of IRS~2E shows, similar to previous work, strong emission in Brγ\gamma and HeI, as well as three forbidden emission lines of FeIII and emission lines of molecular hydrogen (H_2) marking it as a massive young stellar object.Comment: 31 pages and 9 figures, submitted to A

    Experimental analysis of lateral impact on planar brittle material: spatial properties of the cracks

    Get PDF
    The breakup of glass and alumina plates due to planar impacts on one of their lateral sides is studied. Particular attention is given to investigating the spatial location of the cracks within the plates. Analysis based on a phenomenological model suggests that bifurcations along the cracks' paths are more likely to take place closer to the impact region than far away from it, i. e., the bifurcation probability seems to lower as the perpendicular distance from the impacted lateral in- creases. It is also found that many observables are not sensitive to the plate material used in this work, as long as the fragment multiplicities corresponding to the fragmentation of the plates are similar. This gives support to the universal properties of the fragmentation process reported in for- mer experiments. However, even under the just mentioned circumstances, some spatial observables are capable of distinguishing the material of which the plates are made and, therefore, it suggests that this universality should be carefully investigated

    Accretion Signatures from Massive Young Stellar Objects

    Full text link
    High resolution (lambda / Delta-lambda = 50,000) K-band spectra of massive, embedded, young stellar objects are presented. The present sample consists of four massive young stars located in nascent clusters powering Galactic giant H II regions. Emission in the 2.3 micron 2--0 vibrational--rotational bandhead of CO is observed. A range of velocity broadened profiles seen in three of the objects is consistent with the emission arising from a circumstellar disk seen at various inclination angles. Br gamma spectra of the same spectral and spatial resolution are also presented which support an accretion disk or torus model for massive stars. In the fourth object, Br emission suggesting a rotating torus is observed, but the CO profile is narrow, indicating that there may be different CO emission mechanisms in massive stars and this is consistent with earlier observations of the BN object and MWC 349. To--date, only young massive stars of late O or early B types have been identified with clear accretion disk signatures in such embedded clusters. Often such stars are found in the presence of other more massive stars which are revealed by their photospheric spectra but which exhibit no disk signatures. This suggests the timescale for dissipating their disks is much faster than the less massive OB stars or that the most massive stars do not form with accretion disks.Comment: 28 pages, 10 Figures, accepted for publication in the Astrophysical Journa

    Early appraisal of the fixation probability in directed networks

    Get PDF
    In evolutionary dynamics, the probability that a mutation spreads through the whole population, having arisen in a single individual, is known as the fixation probability. In general, it is not possible to find the fixation probability analytically given the mutant's fitness and the topological constraints that govern the spread of the mutation, so one resorts to simulations instead. Depending on the topology in use, a great number of evolutionary steps may be needed in each of the simulation events, particularly in those that end with the population containing mutants only. We introduce two techniques to accelerate the determination of the fixation probability. The first one skips all evolutionary steps in which the number of mutants does not change and thereby reduces the number of steps per simulation event considerably. This technique is computationally advantageous for some of the so-called layered networks. The second technique, which is not restricted to layered networks, consists of aborting any simulation event in which the number of mutants has grown beyond a certain threshold value, and counting that event as having led to a total spread of the mutation. For large populations, and regardless of the network's topology, we demonstrate, both analytically and by means of simulations, that using a threshold of about 100 mutants leads to an estimate of the fixation probability that deviates in no significant way from that obtained from the full-fledged simulations. We have observed speedups of two orders of magnitude for layered networks with 10000 nodes
    • …
    corecore