8,798 research outputs found
CNPq/INPE-LANDSAT system report of activities
The status of the Brazilian LANDSAT facilities and the results achieved are presented. In addition, a LANDSAT product sales/distribution analysis is provided. Data recording and processing capabilities and planned products are addressed
Fast and secure key distribution using mesoscopic coherent states of light
This work shows how two parties A and B can securely share sequences of
random bits at optical speeds. A and B possess true-random physical sources and
exchange random bits by using a random sequence received to cipher the
following one to be sent. A starting shared secret key is used and the method
can be described as an unlimited one-time-pad extender. It is demonstrated that
the minimum probability of error in signal determination by the eavesdropper
can be set arbitrarily close to the pure guessing level. Being based on the
-ry encryption protocol this method also allows for optical amplification
without security degradation, offering practical advantages over the BB84
protocol for key distribution.Comment: 11 pages and 4 figures. This version updates the one published in PRA
68, 052307 (2003). Minor changes were made in the text and one section on
Mutual Information was adde
Recommended from our members
A deforestation-induced tipping point for the South American monsoon system
The Amazon rainforest has been proposed as a tipping element of the earth system, with the possibility of a dieback of the entire ecosystem due to deforestation only of parts of the rainforest. Possible physical mechanisms behind such a transition are still subject to ongoing debates. Here, we use a specifically designed model to analyse the nonlinear couplings between the Amazon rainforest and the atmospheric moisture transport from the Atlantic to the South American continent. These couplings are associated with a westward cascade of precipitation and evapotranspiration across the Amazon. We investigate impacts of deforestation on the South American monsoonal circulation with particular focus on a previously neglected positive feedback related to condensational latent heating over the rainforest, which strongly enhances atmospheric moisture inflow from the Atlantic. Our results indicate the existence of a tipping point. In our model setup, crossing the tipping point causes precipitation reductions of up to 40% in non-deforested parts of the western Amazon and regions further downstream. The responsible mechanism is the breakdown of the aforementioned feedback, which occurs when deforestation reduces transpiration to a point where the available atmospheric moisture does not suffice anymore to release the latent heat needed to maintain the feedback
Sunyaev - Zel'dovich fluctuations from spatial correlations between clusters of galaxies
We present angular power spectra of the cosmic microwave background radiation
anisotropy due to fluctuations of the Sunyaev-Zel'dovich (SZ) effect through
clusters of galaxies. A contribution from the correlation among clusters is
especially focused on, which has been neglected in the previous analyses.
Employing the evolving linear bias factor based on the Press-Schechter
formalism, we find that the clustering contribution amounts to 20-30% of the
Poissonian one at degree angular scales. If we exclude clusters in the local
universe, it even exceeds the Poissonian noise, and makes dominant contribution
to the angular power spectrum. As a concrete example, we demonstrate the
subtraction of the ROSAT X-ray flux-limited cluster samples. It indicates that
we should include the clustering effect in the analysis of the SZ fluctuations.
We further find that the degree scale spectra essentially depend upon the
normalization of the density fluctuations, i.e., \sigma_8, and the gas mass
fraction of the cluster, rather than the density parameter of the universe and
details of cluster evolution models. Our results show that the SZ fluctuations
at the degree scale will provide a possible measure of \sigma_8, while the
arc-minute spectra a probe of the cluster evolution. In addition, the
clustering spectrum will give us valuable information on the bias at high
redshift, if we can detect it by removing X-ray luminous clusters.Comment: 11 pages, 4 figures, submitted to Astrophysical Journa
Localizing gravity on thick branes: a solution for massive KK modes of the Schroedinger equation
We generate scalar thick brane configurations in a 5D Riemannian space time
which describes gravity coupled to a self-interacting scalar field. We also
show that 4D gravity can be localized on a thick brane which does not
necessarily respect Z_2-symmetry, generalizing several previous models based on
the Randall-Sundrum system and avoiding the restriction to orbifold geometries
as well as the introduction of the branes in the action by hand. We begin by
obtaining a smooth brane configuration that preserves 4D Poincar'e invariance
and violates reflection symmetry along the fifth dimension. The extra dimension
can have either compact or extended topology, depending on the values of the
parameters of the solution. In the non-compact case, our field configuration
represents a thick brane with positive energy density centered at y=c_2,
whereas in the compact case we get pairs of thick branes. We recast as well the
wave equations of the transverse traceless modes of the linear fluctuations of
the classical solution into a Schroedinger's equation form with a volcano
potential of finite bottom. We solve Schroedinger equation for the massless
zero mode m^2=0 and obtain a single bound wave function which represents a
stable 4D graviton and is free of tachyonic modes with m^2<0. We also get a
continuum spectrum of Kaluza-Klein (KK) states with m^2>0 that are suppressed
at y=c_2 and turn asymptotically into plane waves. We found a particular case
in which the Schroedinger equation can be solved for all m^2>0, giving us the
opportunity of studying analytically the massive modes of the spectrum of KK
excitations, a rare fact when considering thick brane configurations.Comment: 8 pages in latex. We corrected signs in the field equations, the
expressions for the scalar field and the self-interacting potential. Due to
the fact that no changes are introduced in the warp factor, the physics of
the system remains the sam
LANDSAT and radar mapping of intrusive rocks in SE-Brazil
The feasibility of intrusive rock mapping was investigated and criteria for regional geological mapping established at the scale of 1:500,00 in polycyclic and polymetamorphic areas using the logic method of photointerpretation of LANDSAT imagery and radar from the RADAMBRASIL project. The spectral behavior of intrusive rocks, was evaluated using the interactive multispectral image analysis system (Image-100). The region of Campos (city) in northern Rio de Janeiro State was selected as the study area and digital imagery processing and pattern recognition techniques were applied. Various maps at the 2:250,000 scale were obtained to evaluate the results of automatic data processing
Charge reversal of colloidal particles
A theory is presented for the effective charge of colloidal particles in
suspensions containing multivalent counterions. It is shown that if colloids
are sufficiently strongly charged, the number of condensed multivalent
counterion can exceed the bare colloidal charge leading to charge reversal.
Charge renormalization in suspensions with multivalent counterions depends on a
subtle interplay between the solvation energies of the multivalent counterions
in the bulk and near the colloidal surface. We find that the effective charge
is {\it not} a monotonically decreasing function of the multivalent salt
concentration. Furthermore, contrary to the previous theories, it is found that
except at very low concentrations, monovalent salt hinders the charge reversal.
This conclusion is in agreement with the recent experiments and simulations
On the Number Density of Sunyaev-Zel'dovich Clusters of Galaxies
If the mean properties of clusters of galaxies are well described by the
entropy-driven model, the distortion induced by the cluster population on the
blackbody spectrum of the Cosmic Microwave Background radiation is proportional
to the total amount of intracluster gas while temperature anisotropies are
dominated by the contribution of clusters of about 10^{14} solar masses. This
result depends marginally on cluster parameters and it can be used to estimate
the number density of clusters with enough hot gas to produce a detectable
Sunyaev-Zel'dovich effect. Comparing different cosmological models, the
relation depends mainly on the density parameter Omega_m. If the number density
of clusters could be estimated by a different method, then this dependence
could be used to constrain Omega_m.Comment: 8 pages, 3 figures, submitted to ApJ Letter
- …