1,026 research outputs found
Non equilibrium anisotropic excitons in atomically thin ReS
We present a systematic investigation of the electronic properties of bulk
and few layer ReS van der Waals crystals using low temperature optical
spectroscopy. Weak photoluminescence emission is observed from two
non-degenerate band edge excitonic transitions separated by 20 meV. The
comparable emission intensity of both excitonic transitions is incompatible
with a fully thermalized (Boltzmann) distribution of excitons, indicating the
hot nature of the emission. While DFT calculations predict bilayer ReS to
have a direct fundamental band gap, our optical data suggests that the
fundamental gap is indirect in all cases
Bilayer graphene inclusions in rotational-stacked multilayer epitaxial graphene
Additional component in multi-layer epitaxial graphene grown on the
C-terminated surface of SiC, which exhibits the characteristic electronic
properties of a AB-stacked graphene bilayer, is identified in magneto-optical
response of this material. We show that these inclusions represent a
well-defined platform for accurate magneto-spectroscopy of unperturbed graphene
bilayers.Comment: 5 pages, 2 figures, to appear in Phys. Rev.
Probing the inter-layer exciton physics in a MoS/MoSe/MoS van der Waals heterostructure
Stacking atomic monolayers of semiconducting transition metal dichalcogenides
(TMDs) has emerged as an effective way to engineer their properties. In
principle, the staggered band alignment of TMD heterostructures should result
in the formation of inter-layer excitons with long lifetimes and robust valley
polarization. However, these features have been observed simultaneously only in
MoSe/WSe heterostructures. Here we report on the observation of long
lived inter-layer exciton emission in a MoS/MoSe/MoS trilayer van
der Waals heterostructure. The inter-layer nature of the observed transition is
confirmed by photoluminescence spectroscopy, as well as by analyzing the
temporal, excitation power and temperature dependence of the inter-layer
emission peak. The observed complex photoluminescence dynamics suggests the
presence of quasi-degenerate momentum-direct and momentum-indirect bandgaps. We
show that circularly polarized optical pumping results in long lived valley
polarization of inter-layer exciton. Intriguingly, the inter-layer exciton
photoluminescence has helicity opposite to the excitation. Our results show
that through a careful choice of the TMDs forming the van der Waals
heterostructure it is possible to control the circular polarization of the
inter-layer exciton emission.Comment: 19 pages, 3 figures. Just accepted for publication in Nano Letters
(http://pubs.acs.org/doi/10.1021/acs.nanolett.7b03184
Black chokeberry fruit polyphenols: A valuable addition to reduce lipid oxidation of muffins containing xylitol
The study aimed at assessing effects of black chokeberry polyphenol extract (ChPE) added (0.025â0.075%) to xylitol-containing muffins to reduce lipid oxidation, especially in preventing degradation of hydroperoxides throughout the storage period. Among polyphenolic compounds (3092 mg/100 g in total) in ChPE, polymeric procyanidins were the most abundant (1564 mg/100 g). ChPE addition resulted in a significantly increased capacity of scavenging free radicals and markedly inhibited hydroperoxides decomposition, as reflected by low anisidine values (AnV: 3.25â7.52) throughout the storage. On the other hand, sucrose-containing muffins had increased amounts of primary lipid oxidation products and differed significantly from other samples in conjugated diene hydroperoxides (CD values), which was in accordance with the decrease of C18:2 9c12c in those muffins after storage. In addition, sucrose-containing muffins were found to be those with the highest level of contamination with toxic carbonyl lipid oxidation products. Throughout the storage, no yeast or moulds contamination were found in higher enriched muffins. The incorporation of polyphenols to xylitol-containing muffins resulted in preventing decomposition of polyunsaturated fatty acids (PUFAs), and in reducing the content of some toxic aldehydes. ChPE could be regarded as a possible solution to xylitol-containing muffins to extend their shelf life. The results support the use of xylitol in muffin manufacture as being favourable in terms of suitability for diabetics
Static and Dynamic Disorder in Triple-Cation Hybrid Perovskites
A detailed understanding of the carrier dynamics and emission characteristics
of organic-inorganic lead halide perovskites is critical for their
optoelectronic and energy harvesting applications. In this work, we reveal the
impact of the crystal lattice disorder on the photo-generated electron-hole
pairs through low-temperature photoluminescence measurements. We provide strong
evidence that the intrinsic disorder forms a sub-bandgap tail density of
states, which determines the emission properties at low temperature. The PL
spectra indicate that the disorder evolves with increasing temperature,
changing its character from static to dynamic. This change is accompanied by a
rapid drop of the PL efficiency, originating from the increased mobility of
excitons/polarons, which enables them to reach deep non-radiative recombination
centers more easily
Soft X-ray Fermi surface tomography of palladium and rhodium via momentum microscopy
Fermi surfaces of transition metals, which describe all thermodynamical and transport quantities of solids, often fail to be modeled by one-electron mean-field theory due to strong correlations among the valence electrons. In addition, relativistic spinâorbit coupling pronounced in heavier elements lifts the degeneracy of the energy bands and further modifies the Fermi surface. Palladium and rhodium, two 4d metals attributed to show significant spinâorbit coupling and electron correlations, are ideal for a systematic and fundamental study of the two fundamental physical phenomena and their interplay in the electronic structure. In this study, we explored the Fermi surface of the 4d noble metals palladium and rhodium obtained via high-resolution constant initial state momentum microscopy. The complete 3D-Fermi surfaces of palladium and rhodium were tomographically mapped using soft X-ray photon energies from 34 eV up to 660 eV. To fully capture the orbital angular momentum of states across the Fermi surface, the Fermi surface tomography was performed using p- and s- polarized light. Applicability and limitations of the nearly-free electron final state model in photoemission are discussed using a complex band structure model supported by experimental evidence. The significance of spinâorbit coupling and electron correlations across the Fermi surfaces will be discussed within the context of the photoemission results. State-of-the-art fully relativistic KorringaâKohnâRostoker (KKR) calculations within the one-step model of photoemission are used to support the experimental results
Extended Ï-conjugation: a key to magnetic anisotropy preservation in highly reactive porphyrins
In this study, the magnetic anisotropy of metal complexes is explored for its crucial role in the development of molecular materials for cutting-edge applications in spintronics, memory storage, and quantum computing. The challenge of achieving maximum magnetic anisotropy for paramagnetic single nickel ion sites is addressed and realized through an on-surface thermally induced planarization reaction in tetraphenylporphyrin, which maintains the nickel species in a square planar coordination environment. At the same time, the effective ligand field reduction due to the increased Ï-conjugation results in a lower reactivity of the molecular species. The results herein reported showcase the synergy between magnetic anisotropy and chemical robustness in single-site magnetic materials, thus opening exciting prospects for the development of stable uniaxial anisotropy in these materials. Such a finding represents a relevant advance in the field and validates a protocol for exploring magnetic anisotropy in metal complexes
Versatile transporter apparatus for experiments with optically trapped Bose-Einstein condensates
We describe a versatile and simple scheme for producing magnetically and
optically-trapped Rb-87 Bose-Einstein condensates, based on a moving-coil
transporter apparatus. The apparatus features a TOP trap that incorporates the
movable quadrupole coils used for magneto-optical trapping and long-distance
magnetic transport of atomic clouds. As a stand-alone device, this trap allows
for the stable production of condensates containing up to one million atoms. In
combination with an optical dipole trap, the TOP trap acts as a funnel for
efficient loading, after which the quadrupole coils can be retracted, thereby
maximizing optical access. The robustness of this scheme is illustrated by
realizing the superfluid-to-Mott insulator transition in a three-dimensional
optical lattice
The spin-1/2 XXZ Heisenberg chain, the quantum algebra U_q[sl(2)], and duality transformations for minimal models
The finite-size scaling spectra of the spin-1/2 XXZ Heisenberg chain with
toroidal boundary conditions and an even number of sites provide a projection
mechanism yielding the spectra of models with a central charge c<1 including
the unitary and non-unitary minimal series. Taking into account the
half-integer angular momentum sectors - which correspond to chains with an odd
number of sites - in many cases leads to new spinor operators appearing in the
projected systems. These new sectors in the XXZ chain correspond to a new type
of frustration lines in the projected minimal models. The corresponding new
boundary conditions in the Hamiltonian limit are investigated for the Ising
model and the 3-state Potts model and are shown to be related to duality
transformations which are an additional symmetry at their self-dual critical
point. By different ways of projecting systems we find models with the same
central charge sharing the same operator content and modular invariant
partition function which however differ in the distribution of operators into
sectors and hence in the physical meaning of the operators involved. Related to
the projection mechanism in the continuum there are remarkable symmetry
properties of the finite XXZ chain. The observed degeneracies in the energy and
momentum spectra are shown to be the consequence of intertwining relations
involving U_q[sl(2)] quantum algebra transformations.Comment: This is a preprint version (37 pages, LaTeX) of an article published
back in 1993. It has been made available here because there has been recent
interest in conformal twisted boundary conditions. The "duality-twisted"
boundary conditions discussed in this paper are particular examples of such
boundary conditions for quantum spin chains, so there might be some renewed
interest in these result
- âŠ