298 research outputs found

    Terahertz electron-hole recollisions in GaAs/AlGaAs quantum wells: robustness to scattering by optical phonons and thermal fluctuations

    Full text link
    Electron-hole recollisions are induced by resonantly injecting excitons with a near-IR laser at frequency fNIRf_{\text{NIR}} into quantum wells driven by a ~10 kV/cm field oscillating at fTHz=0.57f_{\text{THz}} = 0.57 THz. At T=12T=12 K, up to 18 sidebands are observed at frequencies fsideband=fNIR+2nfTHzf_{\text{sideband}}=f_{\text{NIR}}+2n f_{\text{THz}}, with 82n28-8 \le 2n \le 28. Electrons and holes recollide with total kinetic energies up to 57 meV, well above the ELO=36E_{\text{LO}} = 36 meV threshold for longitudinal optical (LO) phonon emission. Sidebands with order up to 2n=222n=22 persist up to room temperature. A simple model shows that LO phonon scattering suppresses but does not eliminate sidebands associated with kinetic energies above ELOE_{\text{LO}}.Comment: 5 pages, 4 figure

    Optical frequency combs from high-order sideband generation

    Get PDF
    We report on the generation of frequency combs from the recently-discovered phenomenon of high-order sideband generation (HSG). A near-band gap continuous-wave (cw) laser with frequency fNIRf_\text{NIR} was transmitted through an epitaxial layer containing GaAs/AlGaAs quantum wells that were driven by quasi-cw in-plane electric fields FTHzF_\text{THz} between 4 and 50 kV/cm oscillating at frequencies fTHzf_\text{THz} between 240 and 640 GHz. Frequency combs with teeth at fsideband=fNIR+nfTHzf_\text{sideband}=f_\text{NIR}+nf_\text{THz} (nn even) were produced, with maximum reported n>120n>120, corresponding to a maximum comb span >80>80 THz. Comb spectra with the identical product fTHz×FTHzf_\text{THz}\times F_\text{THz} were found to have similar spans and shapes in most cases, as expected from the picture of HSG as a scattering-limited electron-hole recollision phenomenon. The HSG combs were used to measure the frequency and linewidth of our THz source as a demonstration of potential applications

    Book Reviews

    Get PDF

    Dynamical birefringence: Electron-hole recollisions as probes of Berry curvature

    Full text link
    The direct measurement of Berry phases is still a great challenge in condensed matter systems. The bottleneck has been the ability to adiabatically drive an electron coherently across a large portion of the Brillouin zone in a solid where the scattering is strong and complicated. We break through this bottleneck and show that high-order sideband generation (HSG) in semiconductors is intimately affected by Berry phases. Electron-hole recollisions and HSG occur when a near-band gap laser beam excites a semiconductor that is driven by sufficiently strong terahertz (THz)-frequency electric fields. We carried out experimental and theoretical studies of HSG from three GaAs/AlGaAs quantum wells. The observed HSG spectra contain sidebands up to the 90th order, to our knowledge the highest-order optical nonlinearity observed in solids. The highest-order sidebands are associated with electron-hole pairs driven coherently across roughly 10% of the Brillouin zone around the \Gamma point. The principal experimental claim is a dynamical birefringence: the sidebands, when the order is high enough (> 20), are usually stronger when the exciting near-infrared (NIR) and the THz electric fields are polarized perpendicular than parallel; the sideband intensities depend on the angles between the THz field and the crystal axes in samples with sufficiently weak quenched disorder; and the sidebands exhibit significant ellipticity that increases with increasing sideband order, despite nearly linear excitation and driving fields. We explain dynamical birefringence by generalizing the three-step model for high order harmonic generation. The hole accumulates Berry phases due to variation of its internal state as the quasi-momentum changes under the THz field. Dynamical birefringence arises from quantum interference between time-reversed pairs of electron-hole recollision pathways

    The domestic and gendered context for retirement

    Get PDF
    Against a global backdrop of population and workforce ageing, successive UK governments have encouraged people to work longer and delay retirement. Debates focus mainly on factors affecting individuals’ decisions on when and how to retire. We argue that a fuller understanding of retirement can be achieved by recognizing the ways in which individuals’ expectations and behaviours reflect a complicated, dynamic set of interactions between domestic environments and gender roles, often established over a long time period, and more temporally proximate factors. Using a qualitative data set, we explore how the timing, nature and meaning of retirement and retirement planning are played out in specific domestic contexts. We conclude that future research and policies surrounding retirement need to: focus on the household, not the individual; consider retirement as an often messy and disrupted process and not a discrete event; and understand that retirement may mean very different things for women and for men

    Human Immunodeficiency Virus-1 Uses the Mannose-6-Phosphate Receptor to Cross the Blood-Brain Barrier

    Get PDF
    HIV-1 circulates both as free virus and within immune cells, with the level of free virus being predictive of clinical course. Both forms of HIV-1 cross the blood-brain barrier (BBB) and much progress has been made in understanding the mechanisms by which infected immune cells cross the blood-brain barrier BBB. How HIV-1 as free virus crosses the BBB is less clear as brain endothelial cells are CD4 and galactosylceramide negative. Here, we found that HIV-1 can use the mannose-6 phosphate receptor (M6PR) to cross the BBB. Brain perfusion studies showed that HIV-1 crossed the BBB of all brain regions consistent with the uniform distribution of M6PR. Ultrastructural studies showed HIV-1 crossed by a transcytotic pathway consistent with transport by M6PR. An in vitro model of the BBB was used to show that transport of HIV-1 was inhibited by mannose, mannan, and mannose-6 phosphate and that enzymatic removal of high mannose oligosaccharide residues from HIV-1 reduced transport. Wheatgerm agglutinin and protamine sulfate, substances known to greatly increase transcytosis of HIV-1 across the BBB in vivo, were shown to be active in the in vitro model and to act through a mannose-dependent mechanism. Transport was also cAMP and calcium-dependent, the latter suggesting that the cation-dependent member of the M6PR family mediates HIV-1 transport across the BBB. We conclude that M6PR is an important receptor used by HIV-1 to cross the BBB

    Foreign Aid as a Signal to Investors: Predicting FDI in Post-conflict Countries

    Get PDF
    Does development aid attract foreign direct investment (FDI) in post-conflict countries? This article contributes to the growing literature on effects of aid and on determinants of FDI by explaining how development aid in low-information environments is a signal that can attract investment. Before investing abroad, firms seek data on potential host countries. In post-conflict countries, reliable information is poor, in part because governments face unusual incentives to misrepresent information. In these conditions, firms look to signals. One is development aid, because donors tend to give more to countries they trust to properly handle the funds. Our results show that aid seems to draw FDI—however, this is conditional on whether the aid can be considered geostrategically motivated. We also show that this effect decreases as time elapses after the conflict. This suggests that aid’s signaling effect is specific to low-information environments, and helps rule out alternative causal mechanisms linking aid and FDI
    corecore