1,641 research outputs found

    Invariance of the Kohn (sloshing) mode in a conserving theory

    Get PDF
    It is proven that the center of mass (COM or Kohn) oscillation of a many-body system in a harmonic trap coincides with the motion of a single particle as long as conserving approximations are applied to treat the interactions. The two conditions formulated by Kadanoff and Baym \cite{kb-book} are shown to be sufficient to preserve the COM mode. The result equally applies to zero and finite temperature, as well as to nonequilibrium situations, and to the linear and nonlinear response regimes

    Phosphorylation of Subunit Proteins of Intermediate Filaments from Chicken Muscle and Nonmuscle Cells

    Get PDF
    The phosphorylation of the subunit proteins of intermediate (10-nm) filaments has been investigated in chicken muscle and nonmuscle cells by using a two-dimensional gel electrophoresis system. Desmin, the 50,000-dalton subunit protein of the intermediate filaments of muscle, had previously been shown to exist as two major isoelectric variants--alpha and ß --in smooth, skeletal, and cardiac chicken muscle. Incubation of skeletal and smooth muscle tissue with 32PO4{}3- reveals that the acidic variant, alpha -desmin, and three other desmin variants are phosphorylated in vivo and in vitro. Under the same conditions, minor components of alpha - and ß -tropomyosin from skeletal muscle, but not smooth muscle, are also phosphorylated. Both the phosphorylated desmin variants and the nonphosphorylated ß -desmin variant remain insoluble under conditions that solubilize actin and myosin filaments, but leave Z-discs and intermediate filaments insoluble. Primary cultures of embryonic chicken muscle labeled with 32PO4{}3- possess, in addition to the desmin variants described above, a major nonphosphorylated and multiple phosphorylated variants of the 52,000-dalton, fibroblast-type intermediate filament protein (IFP). Filamentous cytoskeletons, prepared from primary myogenic cultures by Triton X-100 extraction, contain actin and all of the phosphorylated and nonphosphorylated variants of both desmin and the IFP. Similarly, these proteins are the major components of the caps of aggregated 10-nm filaments isolated from the same cell cultures previously exposed to Colcemid. These results demonstrate that a nonphosphorylated and several phosphorylated variants of desmin and IFP are present in assembled structures in muscle and nonmuscle cells

    On the Coulomb-dipole transition in mesoscopic classical and quantum electron-hole bilayers

    Full text link
    We study the Coulomb-to-dipole transition which occurs when the separation dd of an electron-hole bilayer system is varied with respect to the characteristic in-layer distances. An analysis of the classical ground state configurations for harmonically confined clusters with N≤30N\leq30 reveals that the energetically most favorable state can differ from that of two-dimensional pure dipole or Coulomb systems. Performing a normal mode analysis for the N=19 cluster it is found that the lowest mode frequencies exhibit drastic changes when dd is varied. Furthermore, we present quantum-mechanical ground states for N=6, 10 and 12 spin-polarized electrons and holes. We compute the single-particle energies and orbitals in self-consistent Hartree-Fock approximation over a broad range of layer separations and coupling strengths between the limits of the ideal Fermi gas and the Wigner crystal

    Influence of spin fluctuations near the Mott transition: a DMFT study

    Full text link
    Dynamics of magnetic moments near the Mott metal-insulator transition is investigated by a combined slave-rotor and Dynamical Mean-Field Theory solution of the Hubbard model with additional fully-frustrated random Heisenberg couplings. In the paramagnetic Mott state, the spinon decomposition allows to generate a Sachdev-Ye spin liquid in place of the collection of independent local moments that typically occurs in the absence of magnetic correlations. Cooling down into the spin-liquid phase, the onset of deviations from pure Curie behavior in the spin susceptibility is found to be correlated to the temperature scale at which the Mott transition lines experience a marked bending. We also demonstrate a weakening of the effective exchange energy upon approaching the Mott boundary from the Heisenberg limit, due to quantum fluctuations associated to zero and doubly occupied sites.Comment: 6 pages, 3 figures. V3 was largely expande

    The H.E.S.S. II GRB Program

    Full text link
    Gamma-ray bursts (GRBs) are some of the most energetic and exotic events in the Universe, however their behaviour at the highest energies (>10 GeV) is largely unknown. Although the Fermi-LAT space telescope has detected several GRBs in this energy range, it is limited by the relatively small collection area of the instrument. The H.E.S.S. experiment has now entered its second phase by adding a fifth telescope of 600 m2^{2} mirror area to the centre of the array. This new telescope increases the energy range of the array, allowing it to probe the sub-100 GeV range while maintaining the large collection area of ground based gamma-ray observatories, essential to probing short-term variability at these energies. We will present a description of the GRB observation scheme used by the H.E.S.S. experiment, summarising the behaviour and performance of the rapid GRB repointing system, the conditions under which potential GRB repointings are made and the data analysis scheme used for these observations.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherland

    Nonequilibrium Green's functions approach to strongly correlated few-electron quantum dots

    Full text link
    The effect of electron-electron scattering on the equilibrium properties of few-electron quantum dots is investigated by means of nonequilibrium Green's functions theory. The ground and equilibrium state is self-consistently computed from the Matsubara (imaginary time) Green's function for the spatially inhomogeneous quantum dot system whose constituent charge carriers are treated as spin-polarized. To include correlations, the Dyson equation is solved, starting from a Hartree-Fock reference state, within a conserving (second order) self-energy approximation where direct and exchange contributions to the electron-electron interaction are included on the same footing. We present results for the zero and finite temperature charge carrier density, the orbital-resolved distribution functions and the self-consistent total energies and spectral functions for isotropic, two-dimensional parabolic confinement as well as for the limit of large anisotropy--quasi-one-dimensional entrapment. For the considered quantum dots with N=2, 3 and 6 electrons, the analysis comprises the crossover from Fermi gas/liquid (at large carrier density) to Wigner molecule or crystal behavior (in the low-density limit)

    Mott transition in one dimension: Benchmarking dynamical cluster approaches

    Full text link
    The variational cluster approach (VCA) is applied to the one-dimensional Hubbard model at zero temperature using clusters (chains) of up to ten sites with full diagonalization and the Lanczos method as cluster solver. Within the framework of the self-energy-functional theory (SFT), different cluster reference systems with and without bath degrees of freedom, in different topologies and with different sets of variational parameters are considered. Static and one-particle dynamical quantities are calculated for half-filling as a function of U as well as for fixed U as a function of the chemical potential to study the interaction- and filling-dependent metal-insulator (Mott) transition. The recently developed Q-matrix technique is used to compute the SFT grand potential. For benchmarking purposes we compare the VCA results with exact results available from the Bethe ansatz, with essentially exact dynamical DMRG data, with (cellular) dynamical mean-field theory and full diagonalization of isolated Hubbard chains. Several issues are discussed including convergence of the results with cluster size, the ability of cluster approaches to access the critical regime of the Mott transition, efficiency in the optimization of correlated-site vs. bath-site parameters and of multi-dimensional parameter optimization. We also study the role of bath sites for the description of excitation properties and as charge reservoirs for the description of filling dependencies. The VCA turns out to be a computationally cheap method which is competitive with established cluster approaches.Comment: 19 pages, 19 figures, v3 with minor corrections, extended discussio

    Exploring Millions of 6-State FSSP Solutions: the Formal Notion of Local CA Simulation

    Full text link
    In this paper, we come back on the notion of local simulation allowing to transform a cellular automaton into a closely related one with different local encoding of information. This notion is used to explore solutions of the Firing Squad Synchronization Problem that are minimal both in time (2n -- 2 for n cells) and, up to current knowledge, also in states (6 states). While only one such solution was proposed by Mazoyer since 1987, 718 new solutions have been generated by Clergue, Verel and Formenti in 2018 with a cluster of machines. We show here that, starting from existing solutions, it is possible to generate millions of such solutions using local simulations using a single common personal computer

    The H.E.S.S. Galactic plane survey

    Get PDF
    We present the results of the most comprehensive survey of the Galactic plane in very high-energy (VHE) γ-rays, including a public release of Galactic sky maps, a catalog of VHE sources, and the discovery of 16 new sources of VHE γ-rays. The High Energy Spectroscopic System (H.E.S.S.) Galactic plane survey (HGPS) was a decade-long observation program carried out by the H.E.S.S. I array of Cherenkov telescopes in Namibia from 2004 to 2013. The observations amount to nearly 2700 h of quality-selected data, covering the Galactic plane at longitudes from ℓ = 250° to 65° and latitudes |b|≤ 3°. In addition to the unprecedented spatial coverage, the HGPS also features a relatively high angular resolution (0.08° ≈ 5 arcmin mean point spread function 68% containment radius), sensitivity (≲1.5% Crab flux for point-like sources), and energy range (0.2–100 TeV). We constructed a catalog of VHE γ-ray sources from the HGPS data set with a systematic procedure for both source detection and characterization of morphology and spectrum. We present this likelihood-based method in detail, including the introduction of a model component to account for unresolved, large-scale emission along the Galactic plane. In total, the resulting HGPS catalog contains 78 VHE sources, of which 14 are not reanalyzed here, for example, due to their complex morphology, namely shell-like sources and the Galactic center region. Where possible, we provide a firm identification of the VHE source or plausible associations with sources in other astronomical catalogs. We also studied the characteristics of the VHE sources with source parameter distributions. 16 new sources were previously unknown or unpublished, and we individually discuss their identifications or possible associations. We firmly identified 31 sources as pulsar wind nebulae (PWNe), supernova remnants (SNRs), composite SNRs, or gamma-ray binaries. Among the 47 sources not yet identified, most of them (36) have possible associations with cataloged objects, notably PWNe and energetic pulsars that could power VHE PWNe
    • …
    corecore