31 research outputs found
Spare Parts Replacement Policy Based on Chaotic Models
Poisson point processes are widely used to model the consumption of spare parts. However, when the items have very low consumption rates, the historical sample sizes are too small. This paper presents a modelling technique for spare parts policies in the case of items with a low consumption rate. We propose the use of chaotic models derived from the well-known chaotic processes logistic map and Hénon attractor to assess the behaviour of a set of five medium voltage motors supplying four drives in the rolling mill of a steelmaking plant. Supported by the chaotic models, we conclude that the company needs an additional motor to ensure full protection against shortages
Conventional or additive manufacturing for spare parts management: An extensive comparison for Poisson demand
Due to the main peculiarities of spare parts, i.e. intermittent demands, long procurement lead times and high downtime costs when the parts are not available on time, it is often difficult to find the optimal inventory level. Recently, Additive Manufacturing (AM) has emerged as a promising technique to improve spare parts inventory management thanks to a ‘print on demand’ approach.
So far, however, the impact of AM on spare parts inventory management has been little considered, and it is not yet clear when the use of AM for spare parts inventory management would provide benefits over Conventional Manufacturing (CM) techniques.
With this paper we thus aim to contribute to the field of AM spare parts inventory management by developing decision trees that can be of support to managers and practitioners.
To this aim, we considered a Poisson-based inventory management system and we carried out a parametrical analysis considering different part sizes and complexity, backorder costs and part consumption. Moreover, we evaluated scenarios where the order-up-to level is limited to resemble applications with a limited storage capacity.
For the first time, the analysis was not limited to just one AM and one CM technique, but several AM and CM techniques were considered, also combined with different post-process treatments, for a total of nine different sourcing alternatives. In addition, the economic and technical performance of the different sourcing options were obtained thanks to an interdisciplinary approach, where experts from production economics and material science were brought together
A Fuzzy Logic Control application to the Cement Industry
A case study on continuous process control based on fuzzy logic and supported by expert knowledge is proposed. The aim is to control the coal-grinding operations in a cement manufacturing plant. Fuzzy logic is based on linguistic variables that emulate human judgment and can solve complex modeling problems subject to uncertainty or incomplete information. Fuzzy controllers can handle control problems when an accurate model of the process is unavailable, ill-defined, or subject to excessive parameter variations. The system implementation resulted in productivity gains and energy consumption reductions of 3% and 5% respectively, in line with the literature related to similar applications
Cost-benefit evaluation of investment in natural gas distribution
Investment in the distribution of natural gas must be assessed by combining a technical analysis of the investment and an assessment of the social costs and benefits, to evaluate the impact of the project on social welfare in monetary terms. This paper describes how such an analysis can be conducted, by developing a methodology for the evaluation of investment in the distribution of natural gas. Once the net social benefit (NSB) of the investment has been evaluated, it is also important to assess the degree of reliability of such an estimate. This assessment can be conducted through two types of tests: sensitivity analysis and risk analysis. The critical variables are identified in sensitivity analysis as those that have a significant impact on the predicted outcome when they change. To address any uncertainties in the critical variables, a risk analysis quantifies the probability that the NSB is less than that estimated when using modal values for the critical variables. This type of analysis, combined with a technical evaluation, can be effectively used to assess the social consequences of an investment
A Review and Analysis of Traffic Data Sources
Transportation is essential for economic and social development, and vehicle flow data can be used for safety monitoring, pollution analysis, and traffic flow management. Unfortunately, traffic management and control centres do not always comply with codified standards, making it difficult to obtain up-To-date data. This paper analyses open traffic datasets and Italian public traffic data sources available online, providing a knowledge base for transportation managers and researchers. Open traffic datasets are dimensionality-reduced and clustered. An event with 209,135 visitors is used to benchmark the public data sources, the time series of traffic flows are decomposed and a regression tree is used to identify different periods. The results suggest that the available Italian sensor grid is not fine enough to identify all incoming and outgoing traffic, more infrastructure investments are required or the available measurements should be coupled with other evaluation approaches capable of extending the punctual data through mathematical means
DEASort: Assigning items with data envelopment analysis in ABC classes
Multi-criteria inventory classification groups similar items in order to facilitate their management. Data envelopment analysis (DEA) and its many variants have been used extensively for this purpose. However, DEA provides only a ranking and classes are often constructed arbitrarily with percentages. This paper introduces DEASort, a variant of DEA aimed at sorting problems. In order to avoid unrealistic classification, the expertise of decision-makers is incorporated, providing typical examples of items for each class and giving the weights of the criteria with the Analytic Hierarchy Process (AHP). This information bounds the possible weights and is added as a constraint in the model. DEASort is illustrated using a real case study of a company managing warehouses that stock spare parts
Economic order quantity and storage assignment policies
The basic Harris’s lot size model dates back to 1913 (Harris, 1913), hence one century from its publication has been recently celebrated. Starting from the seminal work of Harris, a wide plethora of contributors has faced with the lot-sizing problem for fitting the basic model of the economic order quantity to several environments. In fact, the three key parameters constituting the basic model, i.e. the demand rate, the ordering costs, and the inventory holding costs, have been widely explored in order to relax the assumptions of the original model. However, to the best of the authors’ knowledge, the liaison between holding costs and warehouse management has not been completely addressed. The holding costs have been early considered for simplicity as primarily given by the cost of capital, and thus dependent solely on the average inventory on stock. Conversely, by including a more detailed supply chain costs contribution, the economic order quantity calculus appears depending on a recursive calculus process and on the storage assignment policy. In fact, different approaches of warehouse management, e.g. shared and dedicated storage, lead to highly variable distances to be covered for performing the missions. This leads to a total cost function, and consequently to optimum lot sizes, that are affected by the warehouse management. In this paper, this relationship has been made explicit in order to evaluate an optimal order quantity taking into account storage assignment policies
A periodic inventory system of intermittent demand items with fixed lifetimes
Perishable items with a limited lifespan and intermittent/erratic consumption are found in a variety of industrial settings: dealing with such items is challenging for inventory managers. In this study, a periodic inventory control system is analysed, in which items are characterised by intermittent demand and known expiration dates. We propose a new inventory management method, considering both perishability and intermittency constraints. The new method is a modification of a method proposed in the literature, which uses a periodic order-up-to-level inventory policy and a compound Bernoulli demand. We derive the analytical expression of the fill rate and propose a computational procedure to calculate the optimal solution. A comparative numerical analysis is conducted to evaluate the performance of the proposed solution against the standard inventory control method, which does not take into account perishability. The proposed method leads to a bias that is only affected by demand size, in contrast to the standard method which is impacted by more severe biases driven by intermittence and periods before expiration
Modelling production cost with the effects of learning and forgetting
Defining a dynamic model for calculating production cost is a challenging goal that requires a good fitting ability with real data over time. A novel cost curve is proposed here with the aim of incorporating both the learning and the forgetting phenomenon during both the production phases and the reworking operations. A single-product cost model is thus obtained, and a procedure for fitting the curve with real data is also introduced. Finally, this proposal is validated on a benchmark dataset in terms of mean square error