116 research outputs found

    Persistence of strong silica-enriched domains in the Earth's lower mantle

    Get PDF
    The composition of the lower mantle—comprising 56% of Earth’s volume—remains poorly constrained. Among the major elements, Mg/Si ratios ranging from ∼0.9–1.1, such as in rocky Solar-System building blocks (or chondrites), to ∼1.2–1.3, such as in upper-mantle rocks (or pyrolite), have been proposed. Geophysical evidence for subducted lithosphere deep in the mantle has been interpreted in terms of efficient mixing, and thus homogenous Mg/Si across most of the mantle. However, previous models did not consider the effects of variable Mg/Si on the viscosity and mixing efficiency of lower-mantle rocks. Here, we use geodynamic models to show that large-scale heterogeneity associated with a 20-fold change in viscosity, such as due to the dominance of intrinsically strong (Mg, Fe)SiO3–bridgmanite in low-Mg/Si domains, is sufficient to prevent efficient mantle mixing, even on large scales. Models predict that intrinsically strong domains stabilize mantle convection patterns, and coherently persist at depths of about 1,000–2,200 km up to the present-day, separated by relatively narrow up-/downwelling conduits of pyrolitic material. The stable manifestation of such bridgmanite-enriched ancient mantle structures (BEAMS) may reconcile the geographical fixity of deep-rooted mantle upwelling centres, and geophysical changes in seismic-tomography patterns, radial viscosity, rising plumes and sinking slabs near 1,000 km depth. Moreover, these ancient structures may provide a reservoir to host primordial geochemical signatures

    Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact

    Get PDF
    Muscle wasting in chronic kidney disease (CKD) and other catabolic diseases (e.g. sepsis, diabetes, cancer) can occur despite adequate nutritional intake. It is now known that complications of these various disorders, including acidosis, insulin resistance, inflammation, and increased glucocorticoid and angiotensin II production, all activate the ubiquitin–proteasome system (UPS) to degrade muscle proteins. The initial step in this process is activation of caspase-3 to cleave the myofibril into its components (actin, myosin, troponin, and tropomyosin). Caspase-3 is required because the UPS minimally degrades the myofibril but rapidly degrades its component proteins. Caspase-3 activity is easily detected because it leaves a characteristic 14kD actin fragment in muscle samples. Preliminary evidence from several experimental models of catabolic diseases, as well as from studies in patients, indicates that this fragment could be a useful biomarker because it correlates well with the degree of muscle degradation in dialysis patients and in other catabolic conditions

    GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run

    Get PDF
    The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15∶00 Coordinated Universal Time (UTC) and 27 March 2020, 17∶00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin pastro>0.5. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the first time. Based upon estimates for the component masses, our O3b candidates with pastro>0.5 are consistent with gravitational-wave signals from binary black holes or neutron-star-black-hole binaries, and we identify none from binary neutron stars. However, from the gravitational-wave data alone, we are not able to measure matter effects that distinguish whether the binary components are neutron stars or black holes. The range of inferred component masses is similar to that found with previous catalogs, but the O3b candidates include the first confident observations of neutron-star-black-hole binaries. Including the 35 candidates from O3b in addition to those from GWTC-2.1, GWTC-3 contains 90 candidates found by our analysis with pastro>0.5 across the first three observing runs. These observations of compact binary coalescences present an unprecedented view of the properties of black holes and neutron stars
    • …
    corecore