3,684 research outputs found
Dispersive effects in neutron matter superfluidity
The explicit energy dependence of the single particle self-energy (dispersive
effects), due to short range correlations, is included in the treatment of
neutron matter superfluidity. The method can be applied in general to strong
interacting fermion systems, and it is expected to be valid whenever the
pairing gap is substantially smaller than the Fermi kinetic energy. The results
for neutron matter show that dispersive effects are strong in the density
region near the gap closure.Comment: 9 pages, 4 ps figure
Chaos vs. Linear Instability in the Vlasov Equation: A Fractal Analysis Characterization
In this work we discuss the most recent results concerning the Vlasov
dynamics inside the spinodal region. The chaotic behaviour which follows an
initial regular evolution is characterized through the calculation of the
fractal dimension of the distribution of the final modes excited. The ambiguous
role of the largest Lyapunov exponent for unstable systems is also critically
reviewed.Comment: 10 pages, RevTeX, 4 figures not included but available upon reques
Single particle spectrum and binding energy of nuclear matter
In non-relativistic Brueckner calculations of nuclear matter, the
self-consistent single particle potential is strongly momentum dependent. To
simplify the calculations, a parabolic approximation is often used in the
literature. The variation in the binding energy value introduced by the
parabolic approximation is quantitatively analyzed in detail. It is found that
the approximation can introduce an uncertainty of 1-2 MeV near the saturation
density.Comment: 6 Latex pages, 3 postscript figure
An ab initio theory of double odd-even mass differences in nuclei
Two aspects of the problem of evaluating double odd-even mass differences D_2
in semi-magic nuclei are studied related to existence of two components with
different properties, a superfluid nuclear subsystem and a non-superfluid one.
For the superfluid subsystem, the difference D_2 is approximately equal to
2\Delta, the gap \Delta being the solution of the gap equation. For the
non-superfluid subsystem, D_2 is found by solving the equation for two-particle
Green function for normal systems. Both equations under consideration contain
the same effective pairing interaction. For the latter, the semi-microscopic
model is used in which the main term calculated from the first principles is
supplemented with a small phenomenological addendum containing one
phenomenological parameter supposed to be universal for all medium and heavy
atomic nuclei.Comment: 7 pages, 10 figures, Report at Nuclear Structure and Related Topics,
Dubna, Russia, July 2 - July 7, 201
Measuring neutron-star properties via gravitational waves from binary mergers
We demonstrate by a large set of merger simulations for symmetric binary
neutron stars (NSs) that there is a tight correlation between the frequency
peak of the postmerger gravitational-wave (GW) emission and the physical
properties of the nuclear equation of state (EoS), e.g. expressed by the radius
of the maximum-mass Tolman-Oppenheimer-Volkhoff configuration. Therefore, a
single measurement of the peak frequency of the postmerger GW signal will
constrain the NS EoS significantly. For plausible optimistic merger-rate
estimates a corresponding detection with Advanced LIGO is likely to happen
within an operation time of roughly a year.Comment: 5 pages, 4 figures, accepted by Phys. Rev. Lett., revised version
including referee comment
The neutron star in Cassiopeia A: equation of state, superfluidity, and Joule heating
The thermomagnetic evolution of the young neutron star in Cassiopea A is
studied by considering fast neutrino emission processes. In particular, we
consider neutron star models obtained from the equation of state computed in
the framework of the Brueckner-Bethe-Goldstone many-body theory and variational
methods, and models obtained with the Akmal-Pandharipande-Ravenhall equation of
state. It is shown that it is possible to explain a fast cooling regime as the
one observed in the neutron star in Cassiopea A if the Joule heating produced
by dissipation of the small-scale magnetic field in the crust is taken into
account. We thus argue that it is difficult to put severe constraints on the
superfluid gap if the Joule heating is considered.Comment: 4 pages, 2 figures, to appear on A&A Letter
Chaoticity and Dissipation of Nuclear Collective Motion in a Classical Model
We analyze the behavior of a gas of classical particles moving in a
two-dimensional "nuclear" billiard whose multipole-deformed walls undergo
periodic shape oscillations. We demonstrate that a single particle Hamiltonian
containing coupling terms between the particles' motion and the collective
coordinate induces a chaotic dynamics for any multipolarity, independently on
the geometry of the billiard. The absence of coupling terms allows us to
recover qualitatively the "wall formula" predictions. We also discuss the
dissipative behavior of the wall motion and its relation with the
order-to-chaos transition in the dynamics of the microscopic degrees of
freedom.Comment: LateX, 11 pages, 7 figures available on request, to appear in the
Proceedings of XXXIV Winter Meeting on Nuclear Physics, Bormio 22-27 January,
199
Multiphonon emission model of spin-dependent exciton formation in organic semiconductors
The maximum efficiency in organic light-emitting diodes (OLEDs) depends on
the ratio, , where () is the singlet (triplet) exciton
formation rate. Several recent experiments found that r increases with
increasing oligomer length from a value in monomers and short
oligomers. Here, we model exciton formation as a multi-phonon emission process.
Our model is based on two assertions: (i) More phonons are emitted in triplet
formation than in singlet formation. (ii) The Huang-Rhys parameter for this
phonon emission is smaller in long oligomers than in short ones. We justify
these assertions based on recent experimental and theoretical data.Comment: 8 pages, 7 figure
- âŠ