6 research outputs found

    Signal transduction pathways involved in kinin B(2) receptor-mediated vasodilation in the rat isolated perfused kidney

    No full text
    1. The signal transduction pathways involved in kinin B(2) receptor-related vasodilation were investigated in rat isolated perfused kidneys. During prostaglandin F(2α) or KCl-induced constriction, the vasodilator response to a selective B(2) receptor agonist, Tyr(Me)(8)bradykinin (Tyr(Me)(8)BK), was assessed. 2. Tyr(Me)(8)BK produced a concentration- and endothelium-dependent relaxation that was decreased by about 30 – 40% after inhibition of nitric oxide (NO) synthase by N(G)-nitro-L-arginine (L-NOARG) or of cyclo-oxygenase by indomethacin; a greater decrease (about 40 – 50%) was observed after concomitant inhibition of the two pathways. 3. High extracellular K(+) diminished Tyr(Me)(8)BK-induced relaxation by about 75% suggesting a major contribution of endothelium-derived hyperpolarization. The residual response was almost completely suppressed by NO synthase and cyclo-oxygenase inhibition. The K(+) channel inhibitors, tetrabutylammonium (non-specific) and charybdotoxin (specific for Ca(2+)-activated K(+) channel), suppressed Tyr(Me)(8)BK-induced relaxation resistant to L-NOARG and indomethacin. 4. Inhibition of cytochrome P450 (clotrimazole or 7-ethoxyresorufin) decreased the NO/prostanoids-independent relaxation to Tyr(Me)(8)BK by more than 60%, while inhibition of the cannabinoid CB(1) receptor (SR 141716A) had only a moderate effect. 5. Acetylcholine induced a concentration-dependent relaxation with characteristics nearly similar to the response to Tyr(Me)(8)BK. In contrast, the relaxation elicited by sodium nitroprusside was potentiated in the absence of NO (L-NOARG or removal of endothelium) but remained unchanged otherwise. 6. These results indicate that the activation of kinin B(2) receptors in the rat isolated kidney elicits an endothelium-dependent vasorelaxation, mainly dependent on the activation of charybdotoxin-sensitive Ca(2+)-activated K(+) channels. In addition, cytochrome P450 derivatives appear to be involved

    Vascular kinin B(1) and B(2) receptor-mediated effects in the rat isolated perfused kidney–differential regulations

    No full text
    1. Bradykinin (BK) and analogs acting preferentially at kinin B(1) or B(2) receptors were tested on the rat isolated perfused kidney. Kidneys were perfused in an open circuit with Tyrode's solution. Kidneys preconstricted with prostaglandin F(2α) were used for the analysis of vasodilator responses. 2. BK induced a concentration-dependent renal relaxation (pD(2)=8.9±0.4); this vasodilator response was reproduced by a selective B(2) receptor agonist, Tyr(Me)(8)-BK (pD(2)=9.0±0.1) with a higher maximum effect (E(max)=78.9±6.6 and 55.8±4.3% of ACh-induced relaxation respectively, n=6 and 19, P<0.02). Icatibant (10 nM), a selective B(2) receptor antagonist, abolished BK-elicited relaxation. Tachyphylaxis of kinin B(2) receptors appeared when repeatedly stimulated at 10 min intervals. 3. Des-Arg(9)-BK, a selective B(1) receptor agonist, induced concentration-dependent vasoconstriction at micromolar concentration. Maximum response was enhanced in the presence of lisinopril (1 μM) and inhibited by R 715 (8 μM), a selective B(1) receptor antagonist. Des-Arg(9)-[Leu(8)]-BK behaved as an agonist. 4. A contractile response to des-Arg(9)-BK occurred after 1 h of perfusion and increased with time by a factor of about three over a 3 h perfusion. This post-isolation sensitization to des-Arg(9)-BK was abolished by dexamethasone (DEX, 30 mg kg(−1) i.p., 3 h before the start of the experiment and 10 μM in perfusate) and actinomycin D (2 μM). Acute exposure to DEX (10 μM) had no effect on sensitized des-Arg(9)-BK response, in contrast to indomethacin (30 μM) that abolished it. DEX pretreatment however had no effect on BK-induced renal vasodilation. 5. Present results indicate that the main renal vascular response to BK consists of relaxation linked to the activation of kinin B(2) receptors which rapidly desensitize. Renal B(1) receptors are also present and are time-dependently sensitized during the in vitro perfusion of the rat kidneys
    corecore