141 research outputs found

    Loop Quantum Gravity a la Aharonov-Bohm

    Full text link
    The state space of Loop Quantum Gravity admits a decomposition into orthogonal subspaces associated to diffeomorphism equivalence classes of spin-network graphs. In this paper I investigate the possibility of obtaining this state space from the quantization of a topological field theory with many degrees of freedom. The starting point is a 3-manifold with a network of defect-lines. A locally-flat connection on this manifold can have non-trivial holonomy around non-contractible loops. This is in fact the mathematical origin of the Aharonov-Bohm effect. I quantize this theory using standard field theoretical methods. The functional integral defining the scalar product is shown to reduce to a finite dimensional integral over moduli space. A non-trivial measure given by the Faddeev-Popov determinant is derived. I argue that the scalar product obtained coincides with the one used in Loop Quantum Gravity. I provide an explicit derivation in the case of a single defect-line, corresponding to a single loop in Loop Quantum Gravity. Moreover, I discuss the relation with spin-networks as used in the context of spin foam models.Comment: 19 pages, 1 figure; v2: corrected typos, section 4 expanded

    Effects of amantadine on circulating neurotransmitters in healthy subjects

    Get PDF
    Considering that glutamatergic axons innervate the C1(Ad) medullary nuclei, which are responsible for the excitation of the peripheral adrenal glands, we decided to investigate catecholamines (noradrenaline, adrenaline and dopamine) plus indolamines (plasma serotonin and platelet serotonin) at the blood level, before and after a small oral dose of amantadine, a selective NMDA antagonist. We found that the drug provoked a selective enhancement of noradrenaline plus a minimization of adrenaline, dopamine, plasma serotonin and platelet serotonin circulating levels. Significant enhancement of diastolic blood pressure plus reduction of systolic blood pressure and heart rate paralleled the circulating parameter changes. The above findings allow us to postulate that the drug was able to enhance the peripheral neural sympathetic activity. Minimization of both adrenal sympathetic and parasympathetic activities was also registered after the amantadine challenge. The above findings supported the postulation that this drug should be a powerful therapeutic tool for treating diseases affected by adrenal sympathetic hyperactivity

    Chemotherapy followed by low dose radiotherapy in childhood Hodgkin's disease: retrospective analysis of results and prognostic factors

    Get PDF
    PURPOSE: To report the treatment results and prognostic factors of childhood patients with Hodgkin's disease treated with chemotherapy (CT) followed by low dose radiotherapy (RT). PATIENTS AND METHODS: This retrospective series analyzed 166 patients under 18 years old, treated from January 1985 to December 2003. Median age was 10 years (range 2–18). The male to female ratio was 2,3 : 1. Lymphonode enlargement was the most frequent clinical manifestation (68%), and the time of symptom duration was less than 6 months in 55% of the patients. In histological analysis Nodular Sclerosis was the most prevalent type (48%) followed by Mixed Celularity (34.6%). The staging group according Ann Arbor classification was: I (11.7%), II (36.4%), III (32.1%) and IV (19.8%). The standard treatment consisted of chemotherapy multiple drug combination according the period of treatment protocols vigent: ABVD in 39% (n-65) of the cases, by VEEP in 13 %(n-22), MOPP in 13 %(n-22), OPPA-13 %(n-22) and ABVD/OPPA in 22 %(n-33). Radiotherapy was device to all areas of initial presentation of disease. Dose less or equal than 21 Gy was used in 90.2% of patients with most part of them (90%) by involved field (IFRT) or mantle field. RESULTS: The OS and EFS in 10 years were 89% and 87%. Survival according to clinical stage as 94.7%, 91.3%, 82.3% and 71% for stages I to IV(p = 0,005). The OS was in 91.3% of patients who received RT and in 72.6% of patients who did not (p = 0,003). Multivariate analysis showed presence of B symptoms, no radiotherapy and advanced clinical stage to be associated with a worse prognosis. CONCLUSION: This data demonstrating the importance of RT consolidation with low dose and reduced volume, in all clinical stage of childhood HD, producing satisfactory ten years OS and EFS. As the disease is highly curable, any data of long term follow-up should be presented in order to better direct therapy, and to identify groups of patients who would not benefit from radiation treatment

    Computational Design of Auxotrophy-Dependent Microbial Biosensors for Combinatorial Metabolic Engineering Experiments

    Get PDF
    Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/~tomersh/tools)

    Plasma Metabolomic Profiles Reflective of Glucose Homeostasis in Non-Diabetic and Type 2 Diabetic Obese African-American Women

    Get PDF
    Insulin resistance progressing to type 2 diabetes mellitus (T2DM) is marked by a broad perturbation of macronutrient intermediary metabolism. Understanding the biochemical networks that underlie metabolic homeostasis and how they associate with insulin action will help unravel diabetes etiology and should foster discovery of new biomarkers of disease risk and severity. We examined differences in plasma concentrations of >350 metabolites in fasted obese T2DM vs. obese non-diabetic African-American women, and utilized principal components analysis to identify 158 metabolite components that strongly correlated with fasting HbA1c over a broad range of the latter (r = −0.631; p<0.0001). In addition to many unidentified small molecules, specific metabolites that were increased significantly in T2DM subjects included certain amino acids and their derivatives (i.e., leucine, 2-ketoisocaproate, valine, cystine, histidine), 2-hydroxybutanoate, long-chain fatty acids, and carbohydrate derivatives. Leucine and valine concentrations rose with increasing HbA1c, and significantly correlated with plasma acetylcarnitine concentrations. It is hypothesized that this reflects a close link between abnormalities in glucose homeostasis, amino acid catabolism, and efficiency of fuel combustion in the tricarboxylic acid (TCA) cycle. It is speculated that a mechanism for potential TCA cycle inefficiency concurrent with insulin resistance is “anaplerotic stress” emanating from reduced amino acid-derived carbon flux to TCA cycle intermediates, which if coupled to perturbation in cataplerosis would lead to net reduction in TCA cycle capacity relative to fuel delivery
    corecore