78 research outputs found

    Probing MSSM Higgs Sector with Explicit CP Violation at a Photon Linear Collider

    Get PDF
    The CP properties of Higgs bosons can be probed through their s-channel resonance productions via photon-photon collisions by use of circularly and/or linearly polarized backscattered laser photons at a TeV-scale linear e^+ e^- collider. Exploiting this powerful tool, we investigate in detail the Higgs sector of the minimal supersymmetric Standard Model with explicit CP violation.Comment: 18 pages, 5 figures. Some comments added and typos corrected. To appear in Phys. Rev.

    MSSM Higgs sector CP violation at photon colliders: Revisited

    Full text link
    We present a comprehensive analysis on the MSSM Higgs sector CP violation at photon colliders including the chargino contributions as well as the contributions of other charged particles. The chargino loop contributions can be important for the would-be CP odd Higgs production at photon colliders. Polarization asymmetries are indispensable in determining the CP properties of neutral Higgs bosons.Comment: 24 pages, 40 figure

    MSSM Higgs-Boson Production at Hadron Colliders with Explicit CP Violation

    Get PDF
    Gluon fusion is the main production mechanism for Higgs bosons with masses up to several hundred GeV in pppp collisions at the CERN Large Hadron Collider. We investigate the effects of the CP-violating phases on the fusion process including both the sfermion-loop contributions and the one-loop induced CP-violating scalar-pseudoscalar mixing in the minimal supersymmetric standard model. With a universal trilinear parameter assumed, every physical observable involves only the sum of the phases of the universal trilinear parameter AA and the higgsino mass parameter μ\mu. The phase affects the lightest Higgs-boson production rate significantly through the neutral Higgs-boson mixing and, for the masses around the lightest stop-pair threshold, it also changes the production rate of the heavy Higgs bosons significantly through both the stop and sbottom loops and the neutral Higgs-boson mixing.Comment: 28 pages, 8 figures. Some references and comments added. Typos corrected. To appear in Phys. Rev.

    Top-quark spin correlation at Linear Colliders with anomalous couplings

    Get PDF
    We investigate the feasibility of probing anomalous top-quark couplings of WtbWtb, ZttˉZ t \bar{t}, and γttˉ\gamma t \bar{t} in terms of an effective Lagrangian with dimension-six operators at future e+ee^+e^- linear colliders with a c. m. energy s500800\sqrt s \sim 500-800 GeV. We first examine the constraints on these anomalous couplings from the ZbbˉZ\to b \bar{b} data at LEP I and from unitarity considerations. We then consider in detail the effects of anomalous couplings on ttˉt \bar{t} spin correlations in the top-pair production and decay with three spin bases: the helicity, beamline and off-diagonal bases. Our results show that the polarized beams are more suitable for exploring the effects of different new operators. For polarized beams, the helicity basis yields the best sensitivity.Comment: 23 pages, 10 figures, references adde

    Frustrated two-dimensional Josephson junction array near incommensurability

    Full text link
    To study the properties of frustrated two-dimensional Josephson junction arrays near incommensurability, we examine the current-voltage characteristics of a square proximity-coupled Josephson junction array at a sequence of frustrations f=3/8, 8/21, 0.382 ((35)/2)(\approx (3-\sqrt{5})/2), 2/5, and 5/12. Detailed scaling analyses of the current-voltage characteristics reveal approximately universal scaling behaviors for f=3/8, 8/21, 0.382, and 2/5. The approximately universal scaling behaviors and high superconducting transition temperatures indicate that both the nature of the superconducting transition and the vortex configuration near the transition at the high-order rational frustrations f=3/8, 8/21, and 0.382 are similar to those at the nearby simple frustration f=2/5. This finding suggests that the behaviors of Josephson junction arrays in the wide range of frustrations might be understood from those of a few simple rational frustrations.Comment: RevTex4, 4 pages, 4 eps figures, to appear in Phys. Rev.

    Loop-Induced CP Violation in the Gaugino and Higgsino Sectors of Supersymmetric Theories

    Get PDF
    We show that the gaugino and higgsino sectors of supersymmetric theories can naturally acquire observable CP violation through radiative effects which originate from large CP-violating trilinear couplings of the Higgs bosons to the third-generation scalar quarks. These CP-violating loop effects are not attainable by evolving the supersymmetric renormalization-group equations from a higher unification scale down to the electroweak one. We briefly discuss the phenomenological consequences of such a scenario, and as an example, calculate the two-loop contribution to the neutron electric dipole moment generated by the one-loop chromo-electric dipole moment of the gluino.Comment: 9 pages, as to appear in Physical Review

    CP Phases in Correlated Production and Decay of Neutralinos in the Minimal Supersymmetric Standard Model

    Get PDF
    We investigate the associated production of neutralinos e+eχ~10χ~20e^+e^-\to\tilde{\chi}^0_1\tilde{\chi}^0_2 accompanied by the neutralino leptonic decay χ~20χ~10+\tilde{\chi}^0_2\to\tilde{\chi}^0_1 \ell^+\ell^-, taking into account initial beam polarization and production-decay spin correlations in the minimal supersymmetric standard model with general CP phases but without generational mixing in the slepton sector. The stringent constraints from the electron EDM on the CP phases are also included in the discussion. Initial beam polarizations lead to three CP--even distributions and one CP--odd distribution, which can be studied independently of the details of the neutralino decays. We find that the production cross section and the branching fractions of the leptonic neutralino decays are very sensitive to the CP phases. In addition, the production--decay spin correlations lead to several CP--even observables such as lepton invariant mass distribution, and lepton angular distribution, and one interesting T--odd (CP--odd) triple product of the initial electron momentum and two final lepton momenta, the size of which might be large enough to be measured at the high--luminosity future electron--positron collider or can play a complementary role in constraining the CP phases with the EDM constraints.Comment: Revtex, 37 pages, 12 eps figure

    Spin configuration of top quark pair production with large extra dimensions at photon-photon colliders

    Get PDF
    Top quark pair production at photon-photon colliders is studied in low scale quantum gravity scenario. From the dependence of the cross sections on the spin configuration of the top quark and anti-quark, we introduce a new observable, top spin asymmetry. It is shown that there exists a special top spin basis where with the polarized parent electron beams the top spin asymmetry vanishes in the standard model but retains substantial values with the large extra dimension effects. We also present lower bounds of the quantum gravity scale MSM_S from total cross sections with various combinations of the laser, electron beam, and top quark pair polarizations. The measurements of the top spin state (ttˉ)(t_\uparrow\bar{t}_\downarrow) with unpolarized initial beams are shown to be most effective, enhancing by about 5% the MSM_S bounds with respect to totally unpolarized case.Comment: 18 pages, 4 figures, ReVTe

    CPsuperH: a Computational Tool for Higgs Phenomenology in the Minimal Supersymmetric Standard Model with Explicit CP Violation

    Full text link
    We provide a detailed description of the Fortran code CPsuperH, a newly--developed computational package that calculates the mass spectrum and decay widths of the neutral and charged Higgs bosons in the Minimal Supersymmetric Standard Model with explicit CP violation. The program is based on recent renormalization-group-improved diagrammatic calculations that include dominant higher--order logarithmic and threshold corrections, b-quark Yukawa-coupling resummation effects and Higgs-boson pole-mass shifts. The code CPsuperH is self--contained (with all subroutines included), is easy and fast to run, and is organized to allow further theoretical developments to be easily implemented. The fact that the masses and couplings of the charged and neutral Higgs bosons are computed at a similar high-precision level makes it an attractive tool for Tevatron, LHC and LC studies, also in the CP-conserving case.Comment: 46 pages, LaTeX, 4 eps figures; the code may be obtained from http://theory.ph.man.ac.uk/~jslee/CPsuperH.html (version as to appear in Comput. Phys. Commun.

    Observation of B+ -> K+ eta gamma

    Get PDF
    We report measurements of radiative B decays with K eta gamma final states, using a data sample of 253 /fb recorded at the Upsilon(4S) resonance with the Belle detector at the KEKB e+e- storage ring. We observe B+ -> K+ eta gamma for the first time with a branching fraction of (8.4 +- 1.5(stat) +1.2 -0.9(syst)) X 10^{-6} for M(Keta) K0 eta gamma. We also search for B -> K3*(1780) gamma.Comment: 12 pages, 5 figures, accepted by Phys. Lett.
    corecore