216 research outputs found

    DropIn: Making Reservoir Computing Neural Networks Robust to Missing Inputs by Dropout

    Full text link
    The paper presents a novel, principled approach to train recurrent neural networks from the Reservoir Computing family that are robust to missing part of the input features at prediction time. By building on the ensembling properties of Dropout regularization, we propose a methodology, named DropIn, which efficiently trains a neural model as a committee machine of subnetworks, each capable of predicting with a subset of the original input features. We discuss the application of the DropIn methodology in the context of Reservoir Computing models and targeting applications characterized by input sources that are unreliable or prone to be disconnected, such as in pervasive wireless sensor networks and ambient intelligence. We provide an experimental assessment using real-world data from such application domains, showing how the Dropin methodology allows to maintain predictive performances comparable to those of a model without missing features, even when 20\%-50\% of the inputs are not available

    Learning Tree Distributions by Hidden Markov Models

    Full text link
    Hidden tree Markov models allow learning distributions for tree structured data while being interpretable as nondeterministic automata. We provide a concise summary of the main approaches in literature, focusing in particular on the causality assumptions introduced by the choice of a specific tree visit direction. We will then sketch a novel non-parametric generalization of the bottom-up hidden tree Markov model with its interpretation as a nondeterministic tree automaton with infinite states.Comment: Accepted in LearnAut2018 worksho

    Unsupervised feature selection for sensor time-series in pervasive computing applications

    Get PDF
    The paper introduces an efficient feature selection approach for multivariate time-series of heterogeneous sensor data within a pervasive computing scenario. An iterative filtering procedure is devised to reduce information redundancy measured in terms of time-series cross-correlation. The algorithm is capable of identifying nonredundant sensor sources in an unsupervised fashion even in presence of a large proportion of noisy features. In particular, the proposed feature selection process does not require expert intervention to determine the number of selected features, which is a key advancement with respect to time-series filters in the literature. The characteristic of the prosed algorithm allows enriching learning systems, in pervasive computing applications, with a fully automatized feature selection mechanism which can be triggered and performed at run time during system operation. A comparative experimental analysis on real-world data from three pervasive computing applications is provided, showing that the algorithm addresses major limitations of unsupervised filters in the literature when dealing with sensor time-series. Specifically, it is presented an assessment both in terms of reduction of time-series redundancy and in terms of preservation of informative features with respect to associated supervised learning tasks

    Detecting Adversarial Examples through Nonlinear Dimensionality Reduction

    Get PDF
    Deep neural networks are vulnerable to adversarial examples, i.e., carefully-perturbed inputs aimed to mislead classification. This work proposes a detection method based on combining non-linear dimensionality reduction and density estimation techniques. Our empirical findings show that the proposed approach is able to effectively detect adversarial examples crafted by non-adaptive attackers, i.e., not specifically tuned to bypass the detection method. Given our promising results, we plan to extend our analysis to adaptive attackers in future work.Comment: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) 201

    Using a Machine Learning Approach to Implement and Evaluate Product Line Features

    Get PDF
    Bike-sharing systems are a means of smart transportation in urban environments with the benefit of a positive impact on urban mobility. In this paper we are interested in studying and modeling the behavior of features that permit the end user to access, with her/his web browser, the status of the Bike-Sharing system. In particular, we address features able to make a prediction on the system state. We propose to use a machine learning approach to analyze usage patterns and learn computational models of such features from logs of system usage. On the one hand, machine learning methodologies provide a powerful and general means to implement a wide choice of predictive features. On the other hand, trained machine learning models are provided with a measure of predictive performance that can be used as a metric to assess the cost-performance trade-off of the feature. This provides a principled way to assess the runtime behavior of different components before putting them into operation.Comment: In Proceedings WWV 2015, arXiv:1508.0338

    Linear Memory Networks

    Full text link
    Recurrent neural networks can learn complex transduction problems that require maintaining and actively exploiting a memory of their inputs. Such models traditionally consider memory and input-output functionalities indissolubly entangled. We introduce a novel recurrent architecture based on the conceptual separation between the functional input-output transformation and the memory mechanism, showing how they can be implemented through different neural components. By building on such conceptualization, we introduce the Linear Memory Network, a recurrent model comprising a feedforward neural network, realizing the non-linear functional transformation, and a linear autoencoder for sequences, implementing the memory component. The resulting architecture can be efficiently trained by building on closed-form solutions to linear optimization problems. Further, by exploiting equivalence results between feedforward and recurrent neural networks we devise a pretraining schema for the proposed architecture. Experiments on polyphonic music datasets show competitive results against gated recurrent networks and other state of the art models

    Topographic mapping for quality inspection and intelligent filtering of smart-bracelet data

    Get PDF
    Wrist-worn wearable devices equipped with heart activity sensors can provide valuable data that can be used for preventative health. However, hearth activity analysis from these devices suffers from noise introduced by motion artifacts. Methods traditionally used to remove outliers based on motion data can yield to discarding clean data, if some movement was present, and accepting noisy data, i.e., subject was still but the sensor was misplaced. This work shows that self-organizing maps (SOMs) can be used to effectively accept or reject sections of heart data collected from unreliable devices, such as wrist-worn devices. In particular, the proposed SOM-based filter can accept a larger amount of measurements (less false negatives) with an higher overall quality with respect to methods solely based on statistical analysis of motion data. We provide an empirical analysis on real-world wearable data, comprising heart and motion data of users. We show how topographic mapping can help identifying and interpreting patterns in the sensor data and help relating them to an assessment of user state. More importantly, our experimental results show the proposed approach is able to retain almost twice the amount of data while keeping samples with an error that is an order of magnitude lower with respect to a filter based on accelerometric data

    Generative Tomography Reconstruction

    Full text link
    We propose an end-to-end differentiable architecture for tomography reconstruction that directly maps a noisy sinogram into a denoised reconstruction. Compared to existing approaches our end-to-end architecture produces more accurate reconstructions while using less parameters and time. We also propose a generative model that, given a noisy sinogram, can sample realistic reconstructions. This generative model can be used as prior inside an iterative process that, by taking into consideration the physical model, can reduce artifacts and errors in the reconstructions.Comment: Accepted as a poster for the NeurIPS 2020 Workshop on Deep Learning and Inverse Problem
    • …
    corecore