216 research outputs found
DropIn: Making Reservoir Computing Neural Networks Robust to Missing Inputs by Dropout
The paper presents a novel, principled approach to train recurrent neural
networks from the Reservoir Computing family that are robust to missing part of
the input features at prediction time. By building on the ensembling properties
of Dropout regularization, we propose a methodology, named DropIn, which
efficiently trains a neural model as a committee machine of subnetworks, each
capable of predicting with a subset of the original input features. We discuss
the application of the DropIn methodology in the context of Reservoir Computing
models and targeting applications characterized by input sources that are
unreliable or prone to be disconnected, such as in pervasive wireless sensor
networks and ambient intelligence. We provide an experimental assessment using
real-world data from such application domains, showing how the Dropin
methodology allows to maintain predictive performances comparable to those of a
model without missing features, even when 20\%-50\% of the inputs are not
available
Learning Tree Distributions by Hidden Markov Models
Hidden tree Markov models allow learning distributions for tree structured
data while being interpretable as nondeterministic automata. We provide a
concise summary of the main approaches in literature, focusing in particular on
the causality assumptions introduced by the choice of a specific tree visit
direction. We will then sketch a novel non-parametric generalization of the
bottom-up hidden tree Markov model with its interpretation as a
nondeterministic tree automaton with infinite states.Comment: Accepted in LearnAut2018 worksho
Unsupervised feature selection for sensor time-series in pervasive computing applications
The paper introduces an efficient feature selection approach for multivariate time-series of heterogeneous sensor data within a pervasive computing scenario. An iterative filtering procedure is devised to reduce information redundancy measured in terms of time-series cross-correlation. The algorithm is capable of identifying nonredundant sensor sources in an unsupervised fashion even in presence of a large proportion of noisy features. In particular, the proposed feature selection process does not require expert intervention to determine the number of selected features, which is a key advancement with respect to time-series filters in the literature. The characteristic of the prosed algorithm allows enriching learning systems, in pervasive computing applications, with a fully automatized feature selection mechanism which can be triggered and performed at run time during system operation. A comparative experimental analysis on real-world data from three pervasive computing applications is provided, showing that the algorithm addresses major limitations of unsupervised filters in the literature when dealing with sensor time-series. Specifically, it is presented an assessment both in terms of reduction of time-series redundancy and in terms of preservation of informative features with respect to associated supervised learning tasks
Detecting Adversarial Examples through Nonlinear Dimensionality Reduction
Deep neural networks are vulnerable to adversarial examples, i.e.,
carefully-perturbed inputs aimed to mislead classification. This work proposes
a detection method based on combining non-linear dimensionality reduction and
density estimation techniques. Our empirical findings show that the proposed
approach is able to effectively detect adversarial examples crafted by
non-adaptive attackers, i.e., not specifically tuned to bypass the detection
method. Given our promising results, we plan to extend our analysis to adaptive
attackers in future work.Comment: European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN) 201
Using a Machine Learning Approach to Implement and Evaluate Product Line Features
Bike-sharing systems are a means of smart transportation in urban
environments with the benefit of a positive impact on urban mobility. In this
paper we are interested in studying and modeling the behavior of features that
permit the end user to access, with her/his web browser, the status of the
Bike-Sharing system. In particular, we address features able to make a
prediction on the system state. We propose to use a machine learning approach
to analyze usage patterns and learn computational models of such features from
logs of system usage.
On the one hand, machine learning methodologies provide a powerful and
general means to implement a wide choice of predictive features. On the other
hand, trained machine learning models are provided with a measure of predictive
performance that can be used as a metric to assess the cost-performance
trade-off of the feature. This provides a principled way to assess the runtime
behavior of different components before putting them into operation.Comment: In Proceedings WWV 2015, arXiv:1508.0338
Linear Memory Networks
Recurrent neural networks can learn complex transduction problems that
require maintaining and actively exploiting a memory of their inputs. Such
models traditionally consider memory and input-output functionalities
indissolubly entangled. We introduce a novel recurrent architecture based on
the conceptual separation between the functional input-output transformation
and the memory mechanism, showing how they can be implemented through different
neural components. By building on such conceptualization, we introduce the
Linear Memory Network, a recurrent model comprising a feedforward neural
network, realizing the non-linear functional transformation, and a linear
autoencoder for sequences, implementing the memory component. The resulting
architecture can be efficiently trained by building on closed-form solutions to
linear optimization problems. Further, by exploiting equivalence results
between feedforward and recurrent neural networks we devise a pretraining
schema for the proposed architecture. Experiments on polyphonic music datasets
show competitive results against gated recurrent networks and other state of
the art models
Topographic mapping for quality inspection and intelligent filtering of smart-bracelet data
Wrist-worn wearable devices equipped with heart activity sensors can provide valuable data that can be used for preventative health. However, hearth activity analysis from these devices suffers from noise introduced by motion artifacts. Methods traditionally used to remove outliers based on motion data can yield to discarding clean data, if some movement was present, and accepting noisy data, i.e., subject was still but the sensor was misplaced. This work shows that self-organizing maps (SOMs) can be used to effectively accept or reject sections of heart data collected from unreliable devices, such as wrist-worn devices. In particular, the proposed SOM-based filter can accept a larger amount of measurements (less false negatives) with an higher overall quality with respect to methods solely based on statistical analysis of motion data. We provide an empirical analysis on real-world wearable data, comprising heart and motion data of users. We show how topographic mapping can help identifying and interpreting patterns in the sensor data and help relating them to an assessment of user state. More importantly, our experimental results show the proposed approach is able to retain almost twice the amount of data while keeping samples with an error that is an order of magnitude lower with respect to a filter based on accelerometric data
Generative Tomography Reconstruction
We propose an end-to-end differentiable architecture for tomography
reconstruction that directly maps a noisy sinogram into a denoised
reconstruction. Compared to existing approaches our end-to-end architecture
produces more accurate reconstructions while using less parameters and time. We
also propose a generative model that, given a noisy sinogram, can sample
realistic reconstructions. This generative model can be used as prior inside an
iterative process that, by taking into consideration the physical model, can
reduce artifacts and errors in the reconstructions.Comment: Accepted as a poster for the NeurIPS 2020 Workshop on Deep Learning
and Inverse Problem
- …