2 research outputs found

    Lung cancer incidence trends in Iran and in six geographical regions of the country (2000 - 2005)

    Get PDF
    Background: Lung cancer, the most common type of cancer in humans, is the leading cause of cancer deaths globally, accounting for 1.38 million deaths per year (18.2 of all cancer deaths). Lung cancer is the third most common type of cancer in Iran. Objectives: The present study investigated the incidence of lung cancer in six geographical regions of Iran. Materials and Methods: Data for annual cases of lung cancer were obtained from the national cancer registry during the years 2000 - 2005. The rates of incidence were standardized using world health organization (WHO) population data, and confidence intervals were calculated at 95. Iran was divided into six areas according to geographical differences. The Poisson regression model was used to test the significance of changes in the incidence rates during the study period Results: The age-standardized rates of lung cancer for men and women increased from 0.8 and 0.3 per 100,000 people in 2000 to 4 and 1.5 in 2005, respectively. The highest rate of lung cancer was observed in the mountainous region, and the lowest rate occurred in the western provinces of the Caspian sea region. Despite the difference in the slope of changes, there is an increasing trend in the incidence of lung cancer in all geographical areas. Conclusions: The current incidence rates of lung cancer in all the geographical areas examined are generally increasing. Unfortunately, the rates of urbanization, environmental pollution, and smoking tendency are also increasing in Iran; to control these trends and adjust these risk factors, officials should help more with public-program planning. © 2016, Shiraz University of Medical Sciences

    Serotonergic chemosensory neurons modify the <i>C. elegans</i> immune response by regulating G-protein signaling in epithelial cells

    Get PDF
    The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food
    corecore