11 research outputs found

    A Signature of Maternal Anti-Fetal Rejection in Spontaneous Preterm Birth: Chronic Chorioamnionitis, Anti-Human Leukocyte Antigen Antibodies, and C4d

    Get PDF
    Chronic chorioamnionitis is found in more than one-third of spontaneous preterm births. Chronic chorioamnionitis and villitis of unknown etiology represent maternal anti-fetal cellular rejection. Antibody-mediated rejection is another type of transplantation rejection. We investigated whether there was evidence for antibody-mediated rejection against the fetus in spontaneous preterm birth.This cross-sectional study included women with (1) normal pregnancy and term delivery (n = 140) and (2) spontaneous preterm delivery (n = 140). We analyzed maternal and fetal sera for panel-reactive anti-HLA class I and class II antibodies, and determined C4d deposition on umbilical vein endothelium by immunohistochemistry. Maternal anti-HLA class I seropositivity in spontaneous preterm births was higher than in normal term births (48.6% vs. 32.1%, p = 0.005). Chronic chorioamnionitis was associated with a higher maternal anti-HLA class I seropositivity (p<0.01), significant in preterm and term birth. Villitis of unknown etiology was associated with increased maternal and fetal anti-HLA class I and II seropositivity (p<0.05, for each). Fetal anti-HLA seropositivity was closely related to maternal anti-HLA seropositivity in both groups (p<0.01, for each). C4d deposition on umbilical vein endothelium was more frequent in preterm labor than term labor (77.1% vs. 11.4%, p<0.001). Logistic regression analysis revealed that chronic chorioamnionitis (OR = 6.10, 95% CI 1.29–28.83), maternal anti-HLA class I seropositivity (OR = 5.90, 95% CI 1.60–21.83), and C4d deposition on umbilical vein endothelium (OR = 36.19, 95% CI 11.42–114.66) were associated with preterm labor and delivery.A major subset of spontaneous preterm births has a signature of maternal anti-fetal cellular and antibody-mediated rejections with links to fetal graft-versus-host disease and alloimmune reactions

    Immunomodulatory effects of cyclosporin A on human peripheral blood dendritic cell subsets

    No full text
    Cyclosporin A (CsA) is a potent immuno-suppressant and is approved for the treatment of various disease conditions. The molecular biological mechanism of CsA has been investigated intensively in T cells and has been shown to involve the intracellular calcineurin pathway. Recently, it was reported that CsA has capacities to affect not only T cells but also antigen-presenting cells such as B cells and dendritic cells (DCs). DCs are a master regulator of immune responses that have an integral capacity to prime naive T cells. In the present study, we investigated the biological effects of CsA on human peripheral blood DC subsets: CD11c(+) myeloid and CD11c(−) lymphoid subsets. CsA inhibited the up-regulation of co-stimulatory molecules induced with or without microbial stimuli and CD40L on both CD11c(+) and CD11c(−) subsets. In addition, CsA negatively regulated the endocytic activity of CD11c(+) DC during the immature state. CsA inhibited the interleukin-12 (IL-12) production, but augmented the IL-10 production from the LPS-stimulated CD11c(+) subset, whereas CsA reduced the interferon-α (IFN-α) production from the CD11c(−) subset infected with Sendai virus (SV). Both the LPS-stimulated CD11c(+) subset and SV-infected CD11c(−) subset preferentially induced the development of IFN-γ-producing T helper-type 1 (Th1) cells. Pretreatment of these DC subsets with CsA inhibited the Th1 skewing. These findings suggested a DC-mediated mechanism of immunosupression by CsA

    Longitudinal investigation of natural killer cells and cytokines in chronic fatigue syndrome/myalgic encephalomyelitis

    Get PDF
    Background: Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) is an etiologically unexplained disorder characterised by irregularities in various aspects of the immunological function. Presently, it is unknown whether these immunological changes remain consistent over time. This study investigates Natural Killer (NK) cell cytotoxic activity, NK cell subsets (CD56CD16 and CD56CD16) and cytokines, over the course of a12 month period in patients with CFS/ME.Methods: The participants in the study comprised 65 (47.2 ± 11.5 years) CFS/ME participants and 21 (45.2 ±9.3 years) non-fatigued controls. Flow cytometry protocols were used to assess NK subsets and NK cytotoxic activity at various time points that included baseline (T1), 6 (T2) and 12 months (T3). Cytokine secretions were measured following mitogenic stimulation of peripheral blood mononuclear cells.Results: NK cytotoxic activity was significantly decreased in the CFS/ME patients at T1, T2 and T3 compared to the non-fatigued group. Additionally, in comparison to the non-fatigued controls, the CFS/ME group had significantly lower numbers of CD56CD16 NK cells at both T1 and T2. Interestingly, following mitogenic stimulation, cytokine secretion revealed significant increases in IL-10, IFN-γ and TNF-α at T1 in the CFS/ME group. A significant decrease was observed at T2 in the CFS/ME group for IL-10 and IL-17A while at T3, IL-2 was increased in the CFS/ME group in comparison to the non-fatigued controls. Overall cytotoxic activity was significantly decreased at T3 compared to T1 and T2. CD56CD16 NK cells were much lower at T2 compared to T1 and T3. IL-10 and IL-17A secretion was elevated at T2 in comparison to T1 and T3.Conclusion: These results confirm decreases in immune function in CFS/ME patients, suggesting an increased susceptibility to viral and other infections. Furthermore, NK cytotoxic activity may be a suitable biomarker for diagnosing CFS/ME as it was consistently decreased during the course of the 12 months study
    corecore