27 research outputs found

    The longevity and reversibility of quiescence in Schizosaccharomyces pombe are dependent upon the HIRA histone chaperone

    Get PDF
    Quiescence (G0) is a reversible non-dividing state that facilitates cellular survival in adverse conditions. Here, we demonstrate that the HIRA histone chaperone complex is required for the reversibility and longevity of nitrogen starvation-induced quiescence in Schizosaccharomyces pombe. The HIRA protein, Hip1 is not required for entry into G0 or the induction of autophagy. Although hip1Δ cells retain metabolic activity in G0, they rapidly lose the ability to resume proliferation. After a short period in G0 (1 day), hip1Δ mutants can resume cell growth in response to the restoration of a nitrogen source but do not efficiently reenter the vegetative cell cycle. This correlates with a failure to induce the expression of MBF transcription factor-dependent genes that are critical for S phase. In addition, hip1Δ G0 cells rapidly progress to a senescent state in which they can no longer re-initiate growth following nitrogen source restoration. Analysis of a conditional hip1 allele is consistent with these findings and indicates that HIRA is required for efficient exit from quiescence and prevents an irreversible cell cycle arrest

    The longevity and reversibility of quiescence in <em>Schizosaccharomyces pombe</em> are dependent upon the HIRA histone chaperone

    Get PDF
    Quiescence (G0) is a reversible non-dividing state that facilitates cellular survival in adverse conditions. Here, we demonstrate that the HIRA histone chaperone complex is required for the reversibility and longevity of nitrogen starvation-induced quiescence in Schizosaccharomyces pombe. The HIRA protein, Hip1 is not required for entry into G0 or the induction of autophagy. Although hip1Δ cells retain metabolic activity in G0, they rapidly lose the ability to resume proliferation. After a short period in G0 (1 day), hip1Δ mutants can resume cell growth in response to the restoration of a nitrogen source but do not efficiently reenter the vegetative cell cycle. This correlates with a failure to induce the expression of MBF transcription factor-dependent genes that are critical for S phase. In addition, hip1Δ G0 cells rapidly progress to a senescent state in which they can no longer re-initiate growth following nitrogen source restoration. Analysis of a conditional hip1 allele is consistent with these findings and indicates that HIRA is required for efficient exit from quiescence and prevents an irreversible cell cycle arrest

    Caffeine as a tool for investigating the integration of Cdc25 phosphorylation, activity and ubiquitin-dependent degradation in Schizosaccharomyces pombe

    Get PDF
    The evolutionarily conserved Cdc25 phosphatase is an essential protein that removes inhibitory phosphorylation moieties on the mitotic regulator Cdc2. Together with the Wee1 kinase, a negative regulator of Cdc2 activity, Cdc25 is thus a central regulator of cell cycle progression in Schizosaccharomyces pombe. The expression and activity of Cdc25 is dependent on the activity of the Target of Rapamycin Complex 1 (TORC1). TORC1 inhibition leads to the activation of Cdc25 and repression of Wee1, leading to advanced entry into mitosis. Withdrawal of nitrogen leads to rapid Cdc25 degradation via the ubiquitin- dependent degradation pathway by the Pub1 E3- ligase. Caffeine is believed to mediate the override of DNA damage checkpoint signalling, by inhibiting the activity of the ataxia telangiectasia mutated (ATM)/Rad3 homologues. This model remains controversial, as TORC1 appears to be the preferred target of caffeine in vivo. Recent studies suggest that caffeine induces DNA damage checkpoint override by inducing the nuclear accumulation of Cdc25 in S. pombe. Caffeine may thus modulate Cdc25 activity and stability via inhibition of TORC1. A clearer understanding of the mechanisms by which caffeine stabilises Cdc25, may provide novel insights into how TORC1 and DNA damage signalling is integrated

    Protocol for a randomized controlled trial of a specialized health coaching intervention to prevent excessive gestational weight gain and postpartum weight retention in women: the HIPP study

    Get PDF
    BackgroundPregnancy is a time of significant physiological and physical change for women. In particular, it is a time at which many women are at risk of gaining excessive weight. We describe the rationale and methods of the Health in Pregnancy and Post-birth (HIPP) Study, a study which aims primarily to determine the effectiveness of a specialized health coaching (HC) intervention during pregnancy, compared to education alone, in preventing excessive gestational weight gain and postpartum weight retention 12 months post birth. A secondary aim of this study is to evaluate the mechanisms by which our HC intervention impacts on weight management both during pregnancy and post birth.Methods/DesignThe randomized controlled trial will be conducted with 220 women who have a BMI &gt; 18.5 (American IOM cut-off for normal weight), are 18 years of age or older, English speaking, no history of disordered eating or diabetes and are less than 18 weeks gestation at recruitment. Women will be randomly allocated to either a specialized HC intervention group or an Education Alone group. Our specialized HC intervention has two components: (1) one-on-one sessions with a Health Coach, and (2) two by two hour educational group sessions led by a Health Coach. Women in the Education Alone group will receive two by two hour educational group sessions with no HC components. Body Mass Index, waist circumference, and psychological factors including motivation, readiness to change, symptoms of depression and anxiety, and body dissatisfaction will be assessed at baseline (14-16 weeks gestation), and again at follow-up: 32 weeks gestation, 6 weeks, 6 months and 12 months postpartum.DiscussionOur study responds to the urgent need to design effective interventions in pregnancy to prevent excessive gestational weight gain and postpartum weight retention. Our pregnancy HC intervention is novel and innovative and has been designed to be easily adopted by health professionals who work with pregnant women, such as obstetricians, midwives, allied health professionals and health psychologists. <br /

    The immunopathology of canine vector-borne diseases

    Get PDF
    The canine vector-borne infectious diseases (CVBDs) are an emerging problem in veterinary medicine and the zoonotic potential of many of these agents is a significant consideration for human health. The successful diagnosis, treatment and prevention of these infections is dependent upon firm understanding of the underlying immunopathology of the diseases in which there are unique tripartite interactions between the microorganism, the vector and the host immune system. Although significant advances have been made in the areas of molecular speciation and the epidemiology of these infections and their vectors, basic knowledge of the pathology and immunology of the diseases has lagged behind. This review summarizes recent studies of the pathology and host immune response in the major CVBDs (leishmaniosis, babesiosis, ehrlichiosis, hepatozoonosis, anaplasmosis, bartonellosis and borreliosis). The ultimate application of such immunological investigation is the development of effective vaccines. The current commercially available vaccines for canine leishmaniosis, babesiosis and borreliosis are reviewed

    Pregnancy and neonatal outcomes of COVID-19: The PAN-COVID study

    Get PDF
    Objective To assess perinatal outcomes for pregnancies affected by suspected or confirmed SARS-CoV-2 infection. Methods Prospective, web-based registry. Pregnant women were invited to participate if they had suspected or confirmed SARS-CoV-2 infection between 1st January 2020 and 31st March 2021 to assess the impact of infection on maternal and perinatal outcomes including miscarriage, stillbirth, fetal growth restriction, pre-term birth and transmission to the infant. Results Between April 2020 and March 2021, the study recruited 8239 participants who had suspected or confirmed SARs-CoV-2 infection episodes in pregnancy between January 2020 and March 2021. Maternal death affected 14/8197 (0.2%) participants, 176/8187 (2.2%) of participants required ventilatory support. Pre-eclampsia affected 389/8189 (4.8%) participants, eclampsia was reported in 40/ 8024 (0.5%) of all participants. Stillbirth affected 35/8187 (0.4 %) participants. In participants delivering within 2 weeks of delivery 21/2686 (0.8 %) were affected by stillbirth compared with 8/4596 (0.2 %) delivering ≥ 2 weeks after infection (95 % CI 0.3–1.0). SGA affected 744/7696 (9.3 %) of livebirths, FGR affected 360/8175 (4.4 %) of all pregnancies. Pre-term birth occurred in 922/8066 (11.5%), the majority of these were indicated pre-term births, 220/7987 (2.8%) participants experienced spontaneous pre-term births. Early neonatal deaths affected 11/8050 livebirths. Of all neonates, 80/7993 (1.0%) tested positive for SARS-CoV-2. Conclusions Infection was associated with indicated pre-term birth, most commonly for fetal compromise. The overall proportions of women affected by SGA and FGR were not higher than expected, however there was the proportion affected by stillbirth in participants delivering within 2 weeks of infection was significantly higher than those delivering ≥ 2 weeks after infection. We suggest that clinicians’ threshold for delivery should be low if there are concerns with fetal movements or fetal heart rate monitoring in the time around infection

    Treatment of seborrheic dermatitis: a comprehensive review

    No full text
    Seborrheic dermatitis (SD) is a chronic, recurring inflammatory skin disorder that manifests as erythematous macules or plaques with varying levels of scaling associated with pruritus. The condition typically occurs as an inflammatory response to Malassezia species and tends to occur on seborrheic areas, such as the scalp, face, chest, back, axilla, and groin areas. SD treatment focuses on clearing signs of the disease; ameliorating associated symptoms, such as pruritus; and maintaining remission with long-term therapy. Since the primary underlying pathogenic mechanisms comprise Malassezia proliferation and inflammation, the most commonly used treatment is topical antifungal and anti-inflammatory agents. Other broadly used therapies include lithium gluconate/succinate, coal tar, salicylic acid, selenium sulfide, sodium sulfacetamide, glycerin, benzoyl peroxide, aloe vera, mud treatment, phototherapy, among others. Alternative therapies have also been reported, such as tea tree oil, Quassia amara, and Solanum chrysotrichum. Systemic therapy is reserved only for widespread lesions or in cases that are refractory to topical treatment. Thus, in this comprehensive review, we summarize the current knowledge on SD treatment and attempt to provide appropriate directions for future cases that dermatologists may face
    corecore