99 research outputs found

    Population specificity of the DNAI1 gene mutation spectrum in primary ciliary dyskinesia (PCD)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in the <it>DNAI1 </it>gene, encoding a component of outer dynein arms of the ciliary apparatus, are the second most important genetic cause of primary ciliary dyskinesia (PCD), the genetically heterogeneous recessive disorder with the prevalence of ~1/20,000. The estimates of the <it>DNAI1 </it>involvement in PCD pathogenesis differ among the reported studies, ranging from 4% to 10%.</p> <p>Methods</p> <p>The coding sequence of <it>DNAI1 </it>was screened (SSCP analysis and direct sequencing) in a group of PCD patients (157 families, 185 affected individuals), the first ever studied large cohort of PCD patients of Slavic origin (mostly Polish); multiplex ligation-dependent probe amplification (MLPA) analysis was performed in a subset of ~80 families.</p> <p>Results</p> <p>Three previously reported mutations (IVS1+2-3insT, L513P and A538T) and two novel missense substitutions (C388Y and G515S) were identified in 12 families (i.e. ~8% of non-related Polish PCD patients). The structure of background SNP haplotypes indicated common origin of each of the two most frequent mutations, IVS1+2-3insT and A538T. MLPA analysis did not reveal any significant differences between patients and control samples. The Polish cohort was compared with all the previously studied PCD groups (a total of 487 families): IVS1+2-3insT remained the most prevalent pathogenetic change in <it>DNAI1 </it>(54% of the mutations identified worldwide), and the increased global prevalence of A538T (14%) was due to the contribution of the Polish cohort.</p> <p>Conclusions</p> <p>The worldwide involvement of <it>DNAI1 </it>mutations in PCD pathogenesis in families not preselected for ODA defects ranges from 7 to 10%; this global estimate as well as the mutation profile differs in specific populations. Analysis of the background SNP haplotypes suggests that the increased frequency of chromosomes carrying A538T mutations in Polish patients may reflects local (Polish or Slavic) founder effect. Results of the MLPA analysis indicate that no large exonic deletions are involved in PCD pathogenesis.</p

    Valvular heart disease: what does cardiovascular MRI add?

    Get PDF
    Although ischemic heart disease remains the leading cause of cardiac-related morbidity and mortality in the industrialized countries, a growing number of mainly elderly patients will experience a problem of valvular heart disease (VHD), often requiring surgical intervention at some stage. Doppler-echocardiography is the most popular imaging modality used in the evaluation of this disease entity. It encompasses, however, some non-negligible constraints which may hamper the quality and thus the interpretation of the exam. Cardiac catheterization has been considered for a long time the reference technique in this field, however, this technique is invasive and considered far from optimal. Cardiovascular magnetic resonance imaging (MRI) is already considered an established diagnostic method for studying ventricular dimensions, function and mass. With improvement of MRI soft- and hardware, the assessment of cardiac valve function has also turned out to be fast, accurate and reproducible. This review focuses on the usefulness of MRI in the diagnosis and management of VHD, pointing out its added value in comparison with more conventional diagnostic means

    Ciliary Beating Recovery in Deficient Human Airway Epithelial Cells after Lentivirus Ex Vivo Gene Therapy

    Get PDF
    Primary Ciliary Dyskinesia is a heterogeneous genetic disease that is characterized by cilia dysfunction of the epithelial cells lining the respiratory tracts, resulting in recurrent respiratory tract infections. Despite lifelong physiological therapy and antibiotics, the lungs of affected patients are progressively destroyed, leading to respiratory insufficiency. Recessive mutations in Dynein Axonemal Intermediate chain type 1 (DNAI1) gene have been described in 10% of cases of Primary Ciliary Dyskinesia. Our goal was to restore normal ciliary beating in DNAI1–deficient human airway epithelial cells. A lentiviral vector based on Simian Immunodeficiency Virus pseudotyped with Vesicular Stomatitis Virus Glycoprotein was used to transduce cultured human airway epithelial cells with a cDNA of DNAI1 driven by the Elongation Factor 1 promoter. Transcription and translation of the transduced gene were tested by RT–PCR and western blot, respectively. Human airway epithelial cells that were DNAI1–deficient due to compound heterozygous mutations, and consequently had immotile cilia and no outer dynein arm, were transduced by the lentivirus. Cilia beating was recorded and electron microscopy of the cilia was performed. Transcription and translation of the transduced DNAI1 gene were detected in human cells treated with the lentivirus. In addition, immotile cilia recovered a normal beat and outer dynein arms reappeared. We demonstrated that it is possible to obtain a normalization of ciliary beat frequency of deficient human airway epithelial cells by using a lentivirus to transduce cells with the therapeutic gene. This preliminary step constitutes a conceptual proof that is indispensable in the perspective of Primary Ciliary Dyskinesia's in vivo gene therapy. This is the first time that recovery of cilia beating is demonstrated in this disease

    Nutritional status of pre-school children from low income families

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We evaluated growth and nutritional status of preschool children between 2 and 6 years old from low income families from 14 daycare centers.</p> <p>Methods</p> <p>Cross-sectional study with 1544 children from daycare centers of Santo Andre, Brazil. Body weight (W), height (H) and body mass index (BMI) were classified according to the 2000 National Center for Health Statistics (CDC/NCHS). Cutoff points for nutritional disorders: -2 z scores and 2.5 and 10 percentiles for malnutrition risk, 85 to 95 percentile for overweight and above BMI 95 percentile for obesity. Stepwise Forward Regression method was used including age, gender, birth weight, breastfeeding duration, age of mother at birth and period of time they attended the daycare center.</p> <p>Results</p> <p>Children presented mean z scores of H, W and BMI above the median of the CDC/NCHS reference. Girls were taller and heavier than boys, while we observed similar BMI between both genders. The z scores tended to rise with age. A Pearson Coefficient of Correlation of 0.89 for W, 0.93 for H and 0.95 for BMI was documented indicating positive association of age with weight, height and BMI. The frequency of children below -2 z scores was lower than expected: 1.5% for W, 1.75% for H and 0% for BMI, which suggests that there were no malnourished children. The other extremity of the distribution evidenced prevalence of overweight and obesity of 16.8% and 10.8%, respectively.</p> <p>Conclusion</p> <p>Low income preschool children are in an advanced stage of nutritional transition with a high prevalence of overweight.</p

    In vitro culturing of ciliary respiratory cells—a model for studies of genetic diseases

    Get PDF
    Primary ciliary dyskinesia (PCD) is a rare genetic disorder caused by the impaired functioning of ciliated cells. Its diagnosis is based on the analysis of the structure and functioning of cilia present in the respiratory epithelium (RE) of the patient. Abnormalities of cilia caused by hereditary mutations closely resemble and often overlap with defects induced by the environmental factors. As a result, proper diagnosis of PCD is difficult and may require repeated sampling of patients’ tissue, which is not always possible. The culturing of differentiated cells and tissues derived from the human RE seems to be the best way to diagnose PCD, to study genotype–phenotype relations of genes involved in ciliary dysfunction, as well as other aspects related to the functioning of the RE. In this review, different methods of culturing differentiated cells and tissues derived from the human RE, along with their potential and limitations, are summarized. Several considerations with respect to the factors influencing the process of in vitro differentiation (cell-to-cell interactions, medium composition, cell-support substrate) are also discussed

    The need for national medical licensing examination in Saudi Arabia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medical education in Saudi Arabia is facing multiple challenges, including the rapid increase in the number of medical schools over a short period of time, the influx of foreign medical graduates to work in Saudi Arabia, the award of scholarships to hundreds of students to study medicine in various countries, and the absence of published national guidelines for minimal acceptable competencies of a medical graduate.</p> <p>Discussion</p> <p>We are arguing for the need for a Saudi national medical licensing examination that consists of two parts: Part I (Written) which tests the basic science and clinical knowledge and Part II (Objective Structured Clinical Examination) which tests the clinical skills and attitudes. We propose this examination to be mandated as a licensure requirement for practicing medicine in Saudi Arabia.</p> <p>Conclusion</p> <p>The driving and hindering forces as well as the strengths and weaknesses of implementing the licensing examination are discussed in details in this debate.</p

    The dynamic cilium in human diseases

    Get PDF
    Cilia are specialized organelles protruding from the cell surface of almost all mammalian cells. They consist of a basal body, composed of two centrioles, and a protruding body, named the axoneme. Although the basic structure of all cilia is the same, numerous differences emerge in different cell types, suggesting diverse functions. In recent years many studies have elucidated the function of 9+0 primary cilia. The primary cilium acts as an antenna for the cell, and several important pathways such as Hedgehog, Wnt and planar cell polarity (PCP) are transduced through it. Many studies on animal models have revealed that during embryogenesis the primary cilium has an essential role in defining the correct patterning of the body. Cilia are composed of hundreds of proteins and the impairment or dysfunction of one protein alone can cause complete loss of cilia or the formation of abnormal cilia. Mutations in ciliary proteins cause ciliopathies which can affect many organs at different levels of severity and are characterized by a wide spectrum of phenotypes. Ciliary proteins can be mutated in more than one ciliopathy, suggesting an interaction between proteins. To date, little is known about the role of primary cilia in adult life and it is tempting to speculate about their role in the maintenance of adult organs. The state of the art in primary cilia studies reveals a very intricate role. Analysis of cilia-related pathways and of the different clinical phenotypes of ciliopathies helps to shed light on the function of these sophisticated organelles. The aim of this review is to evaluate the recent advances in cilia function and the molecular mechanisms at the basis of their activity
    corecore