122 research outputs found

    Subregional hippocampal morphology and psychiatric outcome in adolescents who were born very preterm and at term

    Get PDF
    Background: The hippocampus has been reported to be structurally and functionally altered as a sequel of very preterm birth ( < 33 weeks gestation), possibly due its vulnerability to hypoxic-ischemic damage in the neonatal period. We examined hippocampal volumes and subregional morphology in very preterm born individuals in mid- and late adolescence and their association with psychiatric outcome. Methods: Structural brain magnetic resonance images were acquired at two time points (baseline and follow-up) from 65 ex-preterm adolescents (mean age = 15.5 and 19.6 years) and 36 termborn controls (mean age=15.0 and 19.0 years). Hippocampal volumes and subregional morphometric differences were measured from manual tracings and with three-dimensional shape analysis. Psychiatric outcome was assessed with the Rutter Parents' Scale at baseline, the General Health Questionnaire at follow-up and the Peters Delusional Inventory at both time points. Results: In contrast to previous studies we did not find significant difference in the cross-sectional or longitudinal hippocampal volumes between individuals born preterm and controls, despite preterm individual having significantly smaller whole brain volumes. Shape analysis at baseline revealed subregional deformations in 28% of total bilateral hippocampal surface, reflecting atrophy, in ex-preterm individuals compared to controls, and in 22% at follow-up. In ex-preterm individuals, longitudinal changes in hippocampal shape accounted for 11% of the total surface, while in controls they reached 20%. In the whole sample (both groups) larger right hippocampal volume and bilateral anterior surface deformations at baseline were associated with delusional ideation scores at follow-up. Conclusions: This study suggests a dynamic association between cross-sectional hippocampal volumes, longitudinal changes and surface deformations and psychosis proneness. Copyright

    Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    Get PDF
    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures

    Cell lineage transport: a mechanism for molecular gradient formation

    Get PDF
    Gradient formation is a fundamental patterning mechanism during embryo development, commonly related to secreted proteins that move along an existing field of cells. Here, we mathematically address the feasibility of gradients of mRNAs and non-secreted proteins. We show that these gradients can arise in growing tissues whereby cells dilute and transport their molecular content as they divide and grow, a mechanism we termed ‘cell lineage transport.' We provide an experimental test by unveiling a distal-to-proximal gradient of Hoxd13 in the vertebrate developing limb bud driven by cell lineage transport, corroborating our model. Our study indicates that gradients of non-secreted molecules exhibit a power-law profile and can arise for a wide range of biologically relevant parameter values. Dilution and nonlinear growth confer robustness to the spatial gradient under changes in the cell cycle period, but at the expense of sensitivity in the timing of gradient formation. We expect that gradient formation driven by cell lineage transport will provide future insights into understanding the coordination between growth and patterning during embryonic development

    A codon-optimized luciferase from Gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii

    Get PDF
    The unicellular green alga Chlamydomonas reinhardtii has emerged as a superb model species in plant biology. Although the alga is easily transformable, the low efficiency of transgene expression from the Chlamydomonas nuclear genome has severely hampered functional genomics research. For example, poor transgene expression is held responsible for the lack of sensitive reporter genes to monitor gene expression in vivo, analyze subcellular protein localization or study protein–protein interactions. Here, we have tested the luciferase from the marine copepod Gaussia princeps (G-Luc) for its suitability as a sensitive bioluminescent reporter of gene expression in Chlamydomonas. We show that a Gaussia luciferase gene variant, engineered to match the codon usage in the Chlamydomonas nuclear genome, serves as a highly sensitive reporter of gene expression from both constitutive and inducible algal promoters. Its bioluminescence signal intensity greatly surpasses previously developed reporters for Chlamydomonas nuclear gene expression and reaches values high enough for utilizing the reporter as a tool to monitor responses to environmental stresses in vivo and to conduct high-throughput screenings for signaling mutants in Chlamydomonas

    Developing Consensus-Based Outcome Domains for Trials in Children and Adolescents With CKD: An International Delphi Survey

    Get PDF
    RATIONALE & OBJECTIVE: The inconsistency in outcomes reported and lack of patient-reported outcomes across trials in children with chronic kidney disease (CKD) limits shared decision making. As part of the Standardized Outcomes in Nephrology (SONG)-Kids initiative, we aimed to generate a consensus-based prioritized list of critically important outcomes to be reported in all trials in children with CKD. STUDY DESIGN: An online 2-round Delphi survey in English, French, and Hindi languages. SETTINGS & PARTICIPANTS: Patients (aged 8-21 years), caregivers/family, and health care professionals (HCPs) rated the importance of outcomes using a 9-point Likert scale (7-9 indicating critical importance) and completed a Best-Worst Scale. ANALYTICAL APPROACH: We assessed the absolute and relative importance of outcomes. Comments were analyzed thematically. RESULTS: 557 participants (72 [13%] patients, 132 [24%] caregivers, and 353 [63%] HCPs) from 48 countries completed round 1 and 312 (56%) participants (28 [40%] patients, 64 [46%] caregivers, and 220 [56%] HCPs) completed round 2. Five outcomes were common in the top 10 for each group: mortality, kidney function, life participation, blood pressure, and infection. Caregivers and HCPs rated cardiovascular disease higher than patients. Patients gave lower ratings to all outcomes compared with caregivers/HCPs except they rated life participation (round 2 mean difference, 0.1), academic performance (0.1), mobility (0.4), and ability to travel (0.4) higher than caregivers and rated ability to travel (0.4) higher than HCPs. We identified 3 themes: alleviating disease and treatment burden, focusing on the whole child, and resolving fluctuating and conflicting goals. LIMITATIONS: Most participants completed the survey in English. CONCLUSIONS: Mortality, life participation, kidney function, and blood pressure were consistently highly prioritized by patients, caregivers, and HCPs. Patients gave higher priority to some lifestyle-related outcomes compared with caregivers/HCPs. Establishing critically important outcomes for all trials in children with CKD may improve consistent reporting of survival, kidney health, and clinical and life impact outcomes that are meaningful for decision making

    Delayed Rectifier and A-Type Potassium Channels Associated with Kv 2.1 and Kv 4.3 Expression in Embryonic Rat Neural Progenitor Cells

    Get PDF
    BACKGROUND: Because of the importance of voltage-activated K(+) channels during embryonic development and in cell proliferation, we present here the first description of these channels in E15 rat embryonic neural progenitor cells derived from the subventricular zone (SVZ). Activation, inactivation, and single-channel conductance properties of recorded progenitor cells were compared with those obtained by others when these Kv gene products were expressed in oocytes. METHODOLOGY/PRINCIPAL FINDINGS: Neural progenitor cells derived from the subventricular zone of E15 embryonic rats were cultured under conditions that did not promote differentiation. Immunocytochemical and Western blot assays for nestin expression indicated that almost all of the cells available for recording expressed this intermediate filament protein, which is generally accepted as a marker for uncommitted embryonic neural progenitor cells. However, a very small numbers of the cells expressed GFAP, a marker for astrocytes, O4, a marker for immature oligodendrocytes, and betaIII-tubulin, a marker for neurons. Using immunocytochemistry and Western blots, we detected consistently the expression of Kv2.1, and 4.3. In whole-cell mode, we recorded two outward currents, a delayed rectifier and an A-type current. CONCLUSIONS/SIGNIFICANCE: We conclude that Kv2.1, and 4.3 are expressed in E15 SVZ neural progenitor cells, and we propose that they may be associated with the delayed-rectifier and the A-type currents, respectively, that we recorded. These results demonstrate the early expression of delayed rectifier and A-type K(+) currents and channels in embryonic neural progenitor cells prior to the differentiation of these cells

    The Dynamics of Ca2+ Ions within the Solvation Shell of Calbindin D9k

    Get PDF
    The encounter of a Ca2+ ion with a protein and its subsequent binding to specific binding sites is an intricate process that cannot be fully elucidated from experimental observations. We have applied Molecular Dynamics to study this process with atomistic details, using Calbindin D9k (CaB) as a model protein. The simulations show that in most of the time the Ca2+ ion spends within the Debye radius of CaB, it is being detained at the 1st and 2nd solvation shells. While being detained near the protein, the diffusion coefficient of the ion is significantly reduced. However, due to the relatively long period of detainment, the ion can scan an appreciable surface of the protein. The enhanced propagation of the ion on the surface has a functional role: significantly increasing the ability of the ion to scan the protein's surface before being dispersed to the bulk. The contribution of this mechanism to Ca2+ binding becomes significant at low ion concentrations, where the intervals between successive encounters with the protein are getting longer. The efficiency of the surface diffusion is affected by the distribution of charges on the protein's surface. Comparison of the Ca2+ binding dynamics in CaB and its E60D mutant reveals that in the wild type (WT) protein the carboxylate of E60 function as a preferred landing-site for the Ca2+ arriving from the bulk, followed by delivering it to the final binding site. Replacement of the glutamate by aspartate significantly reduced the ability to transfer Ca2+ ions from D60 to the final binding site, explaining the observed decrement in the affinity of the mutated protein to Ca2+

    Regulation of Human Formyl Peptide Receptor 1 Synthesis: Role of Single Nucleotide Polymorphisms, Transcription Factors, and Inflammatory Mediators

    Get PDF
    The gene encoding the human formyl peptide receptor 1 (FPR1) is heterogeneous, containing numerous single nucleotide polymorphisms (SNPs). Here, we examine the effect of these SNPs on gene transcription and protein translation. We also identify gene promoter sequences and putative FPR1 transcription factors. To test the effect of codon bias and codon pair bias on FPR1 expression, four FPR1 genetic variants were expressed in human myeloid U937 cells fused to a reporter gene encoding firefly luciferase. No significant differences in luciferase activity were detected, suggesting that the translational regulation and protein stability of FPR1 are modulated by factors other than the SNP codon bias and the variant amino acid properties. Deletion and mutagenesis analysis of the FPR1 promoter showed that a CCAAT box is not required for gene transcription. A −88/41 promoter construct resulted in the strongest transcriptional activity, whereas a −72/41 construct showed large reduction in activity. The region between −88 and −72 contains a consensus binding site for the transcription factor PU.1. Mutagenesis of this site caused significant reduction in reporter gene expression. The PU.1 binding was confirmed in vivo by chromatin immunoprecipitation, and the binding to nucleotides −84 to −76 (TTCCTATTT) was confirmed in vitro by an electrophoretic mobility shift assay. Thus, similar to many other myeloid genes, FPR1 promoter activity requires PU.1. Two single nucleotide polymorphisms at −56 and −54 did not significantly affect FPR1 gene expression, despite differences in binding of transcription factor IRF1 in vitro. Inflammatory mediators such as interferon-γ, tumor necrosis factor-α, and lipopolysaccharide did not increase FPR1 promoter activity in myeloid cells, whereas differentiation induced by DMSO and retinoic acid enhanced the activity. This implies that the expression of FPR1 in myeloid cells is developmentally regulated, and that the differentiated cells are equipped for immediate response to microbial infections
    corecore