248 research outputs found

    A low-voltage activated, transient calcium current is responsible for the time-dependent depolarizing inward rectification of rat neocortical neurons in vitro

    Get PDF
    Intracellular recordings were obtained from rat neocortical neurons in vitro. The current-voltage-relationship of the neuronal membrane was investigated using current- and single-electrode-voltage-clamp techniques. Within the potential range up to 25 mV positive to the resting membrane potential (RMP: –75 to –80 mV) the steady state slope resistance increased with depolarization (i.e. steady state inward rectification in depolarizing direction). Replacement of extracellular NaCl with an equimolar amount of choline chloride resulted in the conversion of the steady state inward rectification to an outward rectification, suggesting the presence of a voltage-dependent, persistent sodium current which generated the steady state inward rectification of these neurons. Intracellularly injected outward current pulses with just subthreshold intensities elicited a transient depolarizing potential which invariably triggered the first action potential upon an increase in current strength. Single-electrode-voltage-clamp measurements reveled that this depolarizing potential was produced by a transient calcium current activated at membrane potentials 15–20 mV positive to the RMP and that this current was responsible for the time-dependent increase in the magnitude of the inward rectification in depolarizing direction in rat neocortical neurons. It may be that, together with the persistent sodium current, this calcium current regulates the excitability of these neurons via the adjustment of the action potential threshold

    Identification of genes associated with platinum drug sensitivity and resistance in human ovarian cancer cells

    Get PDF
    Platinum-based chemotherapeutic regimens are ultimately unsuccessful due to intrinsic or acquired drug resistance. Understanding the molecular basis for platinum drug sensitivity/resistance is necessary for the development of new drugs and therapeutic regimens. In an effort to identify such determinants, we evaluated the expression of approximately 4000 genes using cDNA microarray screening in a panel of 14 unrelated human ovarian cancer cell lines derived from patients who were either untreated or treated with platinum-based chemotherapy. These data were analysed relative to the sensitivities of the cells to four platinum drugs (cis-diamminedichloroplatinum (cisplatin), carboplatin, DACH-(oxalato)platinum (II) (oxaliplatin) and cis-diamminedichloro (2-methylpyridine) platinum (II) (AMD473)) as well as the proliferation rate of the cells. Correlation analysis of the microarray data with respect to drug sensitivity and resistance revealed a significant association of Stat1 expression with decreased sensitivity to cisplatin (r=0.65) and AMD473 (r=0.76). These results were confirmed by quantitative RT–PCR and Western blot analyses. To study the functional significance of these findings, the full-length Stat1 cDNA was transfected into drug-sensitive A2780 human ovarian cancer cells. The resulting clones that exhibited increased Stat1 expression were three- to five-fold resistant to cisplatin and AMD473 as compared to the parental cells. The effect of inhibiting Jak/Stat signalling on platinum drug sensitivity was investigated using the Janus kinase inhibitor, AG490. Pretreatment of platinum-resistant cells with AG490 resulted in significant increased sensitivity to AMD473, but not to cisplatin or oxaliplatin. Overall, the results indicate that cDNA microarray analysis may be used successfully to identify determinants of drug sensitivity/resistance and future functional studies of other candidate genes from this database may lead to an increased understanding of the drug resistance phenotype

    Astrocytic Mechanisms Explaining Neural-Activity-Induced Shrinkage of Extraneuronal Space

    Get PDF
    Neuronal stimulation causes ∼30% shrinkage of the extracellular space (ECS) between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance and astrocyte function, the phenomenon remains unexplained. Here we present a dynamic model that accounts for current experimental data related to the shrinkage phenomenon in wild-type as well as in gene knockout individuals. We find that neuronal release of potassium and uptake of sodium during stimulation, astrocyte uptake of potassium, sodium, and chloride in passive channels, action of the Na/K/ATPase pump, and osmotically driven transport of water through the astrocyte membrane together seem sufficient for generating ECS shrinkage as such. However, when taking into account ECS and astrocyte ion concentrations observed in connection with neuronal stimulation, the actions of the Na+/K+/Cl− (NKCC1) and the Na+/HCO3− (NBC) cotransporters appear to be critical determinants for achieving observed quantitative levels of ECS shrinkage. Considering the current state of knowledge, the model framework appears sufficiently detailed and constrained to guide future key experiments and pave the way for more comprehensive astroglia–neuron interaction models for normal as well as pathophysiological situations

    Targeting the hypoxic fraction of tumours using hypoxia activated prodrugs

    Get PDF
    The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high priority target and one therapeutic strategies designed to eradicate hypoxic cells in tumours are a group of compounds known collectively as hypoxia activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (i) the ability of oxygen to either reverse or inhibit the activation process and (ii) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples

    Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008

    Get PDF
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore