7 research outputs found

    Cascade Adaptive MPC with Type 2 Fuzzy System for Safety and Energy Management in Autonomous Vehicles: A Sustainable Approach for Future of Transportation

    No full text
    A sustainable circular economy involves designing and promoting new products with the least environmental impact through increasing efficiency. The emergence of autonomous vehicles (AVs) has been a revolution in the automobile industry and a breakthrough opportunity to create more sustainable transportation in the future. Autonomous vehicles are supposed to provide a safe, easy-to-use and environmentally friendly means of transport. To this end, improving AVs’ safety and energy efficiency by using advanced control and optimization algorithms has become an active research topic to deliver on new commitments: carbon reduction and responsible innovation. The focus of this study is to improve the energy consumption of an AV in a vehicle-following process while safe driving is satisfied. We propose a cascade control system in which an autonomous cruise controller (ACC) is integrated with an energy management system (EMS) to reduce energy consumption. An adaptive model predictive control (AMPC) is proposed as the ACC to control the acceleration of the ego vehicle (the following vehicle) in a vehicle-following scenario, such that it can safely follow the lead vehicle in the same lane on a highway. The proposed ACC appropriately switches between speed and distance control systems to follow the lead vehicle safely and precisely. The computed acceleration is then used in the EMS component to find the optimal engine torque that minimizes the fuel consumption of the ego vehicle. EMS is designed based on two methods: type 1 fuzzy logic system (T1FLS) and interval type 2 fuzzy logic system (IT2FLS). Results show that the combination of AMPC and IT2FLS significantly reduces fuel consumption while the ego vehicle follows the lead vehicle safely and with a minimum spacing error. The proposed controller facilitates smarter energy use in AVs and supports safer transportation

    The Multiple Endocrine Neoplasia Syndromes

    No full text

    Malignant Mesothelioma: Mechanism of Carcinogenesis

    No full text
    International audienceAlmost 60 years ago, malignant mesothelioma (MM) was acknowledged as a specific cancer related to the inhalation of asbestos fibers (1). Its strong association with asbestos exposure triggered the development of researches. They consisted in epidemiological studies to know the risk factors that explain MM occurrence in the population, and of experimental studies to understand MM biological development as a neoplastic disease. Since that time, MM remains a rare and highly aggressive cancer that prompts researches to better manage patients with MM and to offer efficient therapies. To achieve this goal, a solid knowledge of the mechanisms of mesothelial carcinogenesis is needed and deserves basic researches to progress. So far, our knowledge is based on pathophysiological and toxicological researches, and from biological and molecular studies using MM tissue tumor samples and cell lines from humans and experimental animals. Most experimental studies have been based on the cellular and/or animal responses to asbestos fibers, and in genetically modified mice, demonstrating the genotoxic effect of asbestos and relationship with MM induction. The development of large-scale analyses allowing global integration of the molecular networks involved in mesothelial cell transformation should increase our understanding of mesothelial carcinogenesis. In human, MM tumors appeared as heterogeneous entities, based on morphological patterns and molecular specificities including gene mutations. The recent development of high throughput methods allowed classification of MM according to their histological type, genomic and epigenomic characteristics and deregulated pathways. The aim of the present review is to propose a potential mechanism of mesothelial carcinogenesis by integrating data, underlying the mechanisms that may be shared with other types of fibres that may pose current health issue
    corecore