158 research outputs found
Sustainability of the whole-community project '10,000 Steps': a longitudinal study
<p>Abstract</p> <p>Background</p> <p>In the dissemination and implementation literature, there is a dearth of information on the sustainability of community-wide physical activity (PA) programs in general and of the '10,000 Steps' project in particular. This paper reports a longitudinal evaluation of organizational and individual sustainability indicators of '10,000 Steps'.</p> <p>Methods</p> <p>Among project adopters, department heads of 24 public services were surveyed 1.5 years after initially reported project implementation to assess continuation, institutionalization, sustained implementation of intervention components, and adaptations. Barriers and facilitators of project sustainability were explored. Citizens (<it>n </it>= 483) living near the adopting organizations were interviewed to measure maintenance of PA differences between citizens aware and unaware of '10,000 Steps'. Independent-samples <it>t</it>, Mann-Whitney <it>U</it>, and chi-square tests were used to compare organizations for representativeness and individual PA differences.</p> <p>Results</p> <p>Of all organizations, 50% continued '10,000 Steps' (mostly in cycles) and continuation was independent of organizational characteristics. Level of intervention institutionalization was low to moderate on evaluations of routinization and moderate for project saturation. The global implementation score (58%) remained stable and three of nine project components were continued by less than half of organizations (posters, street signs and variants, personalized contact). Considerable independent adaptations of the project were reported (e.g. campaign image). Citizens aware of '10,000 Steps' remained more active during leisure time than those unaware (227 Β± 235 and 176 Β± 198 min/week, respectively; <it>t </it>= -2.6; p < .05), and reported more household-related (464 Β± 397 and 389 Β± 346 min/week, respectively; <it>t </it>= -2.2; p < .05) and moderate-intensity-PA (664 Β± 424 and 586 Β± 408 min/week, respectively; <it>t </it>= -2.0; p < .05). Facilitators of project sustainability included an organizational leader supporting the project, availability of funding or external support, and ready-for-use materials with ample room for adaptation. Barriers included insufficient synchronization between regional and community policy levels and preference for other PA projects.</p> <p>Conclusions</p> <p>'10,000 Steps' could remain sustainable but design, organizational, and contextual barriers need consideration. Sustainability of '10,000 Steps' in organizations can occur in cycles rather than in ongoing projects. Future research should compare sustainability other whole-community PA projects with '10,000 Steps' to contrast sustainability of alternative models of whole-community PA projects. This would allow optimization of project elements and methods to support decisions of choice for practitioners.</p
The impact of disseminating the whole-community project '10,000 Steps': a RE-AIM analysis
<p>Abstract</p> <p>Background</p> <p>There are insufficient research reports on the wide-scale dissemination of effective whole-community physical activity (PA) programs. The purpose of this paper is to evaluate the impact of the wide-scale dissemination of '10,000 Steps', using the RE-AIM framework.</p> <p>Methods</p> <p>Dissemination efforts targeted a large region of Belgium and were concentrated on media strategies and peer networks of specific professional organizations, such as local health promotion services. Heads of department of 69 organizations received an on-line survey to assess project awareness, adoption, implementation and intended continuation of '10,000 Steps'. On the individual level, 755 citizens living in the work area of the organizations were interviewed for project awareness and PA levels. Measures were structured according to the RE-AIM dimensions (reach, effectiveness, adoption, implementation, maintenance). Independent sample <it>t </it>and chi-square tests were used to compare groups for representativeness at the organizational and individual level, and for individual PA differences.</p> <p>Results</p> <p>Of all organizations, 90% was aware of '10,000 Steps' (effectiveness - organizational level) and 36% adopted the project (adoption). The global implementation score was 52%. One third intended to continue the project in the future (maintenance) and 48% was still undecided. On the individual level, 35% of citizens were aware of '10,000 Steps' (reach). They reported significantly higher leisure-time PA levels than those not aware of '10,000 Steps' (256 Β± 237 and 207 Β± 216 min/week, respectively; <it>t </it>= -2.8; p < .005) (effectiveness - individual level). When considering representativeness, adoption of '10.000 Steps' was independent of most organizational characteristics, except for years of experience in PA promotion (7.6 Β± 4.6 and 2.9 Β± 5.9 years for project staff and non-project staff members, respectively; <it>t </it>= 2.79; <it>p </it>< 0.01). Project awareness in citizens was independent of all demographic characteristics.</p> <p>Conclusions</p> <p>'10,000 Steps' shows potential for wide-scale dissemination but a supportive linkage system seems recommended to encourage adoption levels and high quality implementation.</p
Diurnal Variation in Urodynamics of Rat
In humans, the storage and voiding functions of the urinary bladder have a characteristic diurnal variation, with increased voiding during the day and urine storage during the night. However, in animal models, the daily functional differences in urodynamics have not been well-studied. The goal of this study was to identify key urodynamic parameters that vary between day and night. Rats were chronically instrumented with an intravesical catheter, and bladder pressure, voided volumes, and micturition frequency were measured by continuous filling cystometry during the light (inactive) or dark (active) phases of the circadian cycle. Cage activity was recorded by video during the experiment. We hypothesized that nocturnal rats entrained to a standard 12:12 light:dark cycle would show greater ambulatory activity and more frequent, smaller volume micturitions in the dark compared to the light. Rats studied during the light phase had a bladder capacity of 1.44Β±0.21 mL and voided every 8.2Β±1.2 min. Ambulatory activity was lower in the light phase, and rats slept during the recording period, awakening only to urinate. In contrast, rats studied during the dark were more active, had a lower bladder capacities (0.65Β±0.18 mL), and urinated more often (every 3.7Β±0.9 min). Average bladder pressures were not significantly different between the light and dark (13.40Β±2.49 and 12.19Β±2.85 mmHg, respectively). These results identify a day-night difference in bladder capacity and micturition frequency in chronically-instrumented nocturnal rodents that is phase-locked to the normal circadian locomotor activity rhythm of the animal. Furthermore, since it has generally been assumed that the daily hormonal regulation of renal function is a major driver of the circadian rhythm in urination, and few studies have addressed the involvement of the lower urinary tract, these results establish the bladder itself as a target for circadian regulation
Na+ imaging reveals little difference in action potentialβevoked Na+ influx between axon and soma
Author Posting. Β© The Authors, 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Neuroscience 13 (2010): 852-860, doi:10.1038/nn.2574.In cortical pyramidal neurons, the axon initial segment (AIS) plays a pivotal role in synaptic
integration. It has been asserted that this property reflects a high density of Na+ channels in AIS.
However, we here report that APβassociated Na+ flux, as measured by highβspeed fluorescence
Na+ imaging, is about 3 times larger in the rat AIS than in the soma. Spike evoked Na+ flux in
the AIS and the first node of Ranvier is about the same, and in the basal dendrites it is about 8
times lower. At near threshold voltages persistent Na+ conductance is almost entirely axonal.
Finally, we report that on a time scale of seconds, passive diffusion and not pumping is
responsible for maintaining transmembrane Na+ gradients in thin axons during high frequency
AP firing. In computer simulations, these data were consistent with the known features of AP
generation in these neurons.Supported by USβ
Israel BSF Grant (2003082), Grass Faculty Grant from the MBL, NIH Grant (NS16295),
Multiple Sclerosis Society Grant (PP1367), and a fellowship from the Gruss Lipper Foundation
A review of the renal system and diurnal variations of renal activity in livestock
Kidneys are the main organs regulating water-electrolyte homeostasis in the body. They are responsible for maintaining the total volume of water and its distribution in particular water spaces, for electrolyte composition of systemic fluids and also for maintaining acid-base balance. These functions are performed by the plasma filtration process in renal glomeruli and the processes of active absorption and secretion in renal tubules, all adjusted to an 'activity-rest' rhythm. These diurnal changes are influenced by a 24-hour cycle of activity of hormones engaged in the regulation of renal activity. Studies on spontaneous rhythms of renal activity have been carried out mainly on humans and laboratory animals, but few studies have been carried out on livestock animals. Moreover, those results cover only some aspects of renal physiology. This review gives an overview of current knowledge concerning renal function and diurnal variations of some renal activity parameters in livestock, providing greater understanding of general chronobiological processes in mammals. Detailed knowledge of these rhythms is useful for clinical, practical and pharmacological purposes, as well as studies on their physical performance
In vivo Identification and Specificity assessment of mRNA markers of hypoxia in human and mouse tumors
<p>Abstract</p> <p>Background</p> <p>Tumor hypoxia is linked to poor prognosis, but identification and quantification of tissue hypoxia remains a challenge. The hypoxia-specificity of HIF-1Ξ± target genes in vivo has been questioned due to the confounding influence of other microenvironmental abnormalities known to affect gene expression (e.g., low pH). Here we describe a new technique that by exploiting intratumoral oxygenation heterogeneity allows us to identify and objectively rank the most robust mRNA hypoxia biomarkers.</p> <p>Methods</p> <p>Mice carrying human (FaDu<sub>dd</sub>) or murine (SCCVII) tumors were injected with the PET hypoxia tracer FAZA. Four hours post-injection tumors were removed, frozen, and crushed into milligram-sized fragments, which were transferred individually to pre-weighed tubes containing RNAlater and then weighed. For each fragment radioactivity per tissue mass and expression patterns of selected mRNA biomarkers were analyzed and compared.</p> <p>Results</p> <p>In both tumour models, fragmentation into pieces weighing 10 to 60 mg resulted in tissue fragments with highly variable relative content of hypoxic cells as evidenced by an up to 13-fold variation in FAZA radioactivity per mass of tissue. Linear regression analysis comparing FAZA retention with patterns of gene expression in individual tissue fragments revealed that CA9, GLUT1 and LOX mRNA levels were equally and strongly correlated to hypoxic extent in FaDu<sub>dd</sub>. The same link between hypoxia and gene expression profile was observed for CA9 and GLUT1, but not LOX, in SCCVII tumors. Apparent in vivo hypoxia-specificity for other putative molecular markers of tissue hypoxia was considerably weaker.</p> <p>Conclusions</p> <p>The portrayed technique allows multiple pairwise measurements of mRNA transcript levels and extent of hypoxia in individual tumors at a smallest possible volumetric scale which (by limiting averaging effects inherent to whole-tumor analysis) strengthen the conclusiveness on true hypoxia-specificity of candidate genes while limiting the required number of tumors. Among tested genes, our study identified CA9, GLUT1 and possibly LOX as highly specific biomarkers of tumor hypoxia in vivo.</p
Glutamine supplementation
Intravenous glutamine supplementation is standard care when parenteral nutrition is given for critical illness. There are data of a reduced mortality when glutamine supplementation is given. In addition, standard commercial products for parenteral nutrition do not contain any glutamine due to glutamine instability in aqueous solutions. For the majority of critical ill patients who are fed enterally, the available evidence is insufficient to recommend glutamine supplementation. Standard formulation of enteral nutrition contains some glutamine: 2-4 g/L. However, this dose is insufficient to normalize glutamine plasma concentration
Trial design: Computer guided normal-low versus normal-high potassium control in critically ill patients: Rationale of the GRIP-COMPASS study
Background: Potassium depletion is common in hospitalized patients and can cause serious complications such as cardiac arrhythmias. In the intensive care unit (ICU) the majority of patients require potassium suppletion. However, there are no data regarding the optimal control target in critically ill patients. After open-heart surgery, patients have a strongly increased risk of atrial fibrillation or atrial flutter (AFF). In a novel trial design, we examined if in these patients different potassium control-targets within the normal range may have different effects on the incidence of AFF. Methods/Design: The "computer-driven Glucose and potassium Regulation program in Intensive care Patients with COMparison of PotASSium targets within normokalemic range (GRIP-COMPASS) trial" is a single-center prospective trial in which a total of 1200 patients are assigned to either a potassium control-target of 4.0 mmol/L or 4.5 mmol/L in consecutive alternating blocks of 50 patients each. Potassium levels are regulated by the computer-assisted potassium suppletion algorithm called GRIP-II (Glucose and potassium regulation for Intensive care Patients). Primary endpoint is the in-hospital incidence of AFF after cardiac surgery. Secondary endpoints are: in-hospital AFF in medical patients or patients after non-cardiac surgery, actually achieved potassium levels and their variation, electrolyte and glucose levels, potassium and insulin requirements, cumulative fluid balance, (ICU) length of stay, ICU mortality, hospital mortality and 90-day mortality. Discussion: The GRIP-COMPASS trial is the first controlled clinical trial to date that compares potassium targets. Other novel methodological elements of the study are that it is performed in ICU patients where both targets are within the normal range and that a computer-assisted potassium suppletion algorithm is used
Prediction of outcome in individuals with diabetic foot ulcers: focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study
Aims/hypothesis Outcome data on individuals with diabetic foot ulcers are scarce, especially in those with peripheral arterial disease (PAD). We therefore examined the clinical characteristics that best predict poor outcome in a large population of diabetic foot ulcer patients and examined whether such predictors differ between patients with and without PAD. Methods Analyses were conducted within the EURODIALE Study, a prospective cohort study of 1,088 diabetic foot ulcer patients across 14 centres in Europe. Multiple logistic regression modelling was used to identify independent predictors of outcome (i.e. non-healing of the foot ulcer). Results After 1 year of follow-up, 23% of the patients had not healed. Independent baseline predictors of non-healing in the whole study population were older age, male sex, heart failure, the inability to stand or walk without help, end-stage renal disease, larger ulcer size, peripheral neuropathy and PAD. When analyses were performed according to PAD status, infection emerged as a specific predictor of non-healing in PAD patients only. Conclusions/Interpretation Predictors of healing differ between patients with and without PAD, suggesting that diabetic foot ulcers with or without concomitant PAD should be defined as two separate disease states. The observed negative impact of infection on healing that was confined to patients with PAD needs further investigation
Multizone Paper Platform for 3D Cell Cultures
In vitro 3D culture is an important model for tissues in
vivo. Cells in different locations of 3D tissues are
physiologically different, because they are exposed to different concentrations
of oxygen, nutrients, and signaling molecules, and to other environmental
factors (temperature, mechanical stress, etc). The majority of high-throughput
assays based on 3D cultures, however, can only detect the
average behavior of cells in the whole 3D construct.
Isolation of cells from specific regions of 3D cultures is possible, but relies
on low-throughput techniques such as tissue sectioning and micromanipulation.
Based on a procedure reported previously (βcells-in-gels-in-paperβ
or CiGiP), this paper describes a simple method for culture of arrays of thin
planar sections of tissues, either alone or stacked to create more complex 3D
tissue structures. This procedure starts with sheets of paper patterned with
hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells
suspended in extracellular matrix (ECM) gel onto the patterned paper creates an
array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose
fibers) containing cells. Stacking the sheets with zones aligned on top of one
another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D
culture, by peeling apart the sheets of paper, βsectionsβ all 96
cultures at once. It is, thus, simple to isolate 200-micron-thick
cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D
cultures are assembled from multiple layers, the number of cells plated
initially in each layer determines the spatial distribution of cells in the
stacked 3D cultures. This capability made it possible to compare the growth of
3D tumor models of different spatial composition, and to examine the migration
of cells in these structures
- β¦