685 research outputs found

    Role of lepton flavor violating (LFV) muon decay in Seesaw model and LSND

    Get PDF
    The aim of the work is to study LFV in a newly proposed Seesaw model of neutrino mass and to see whether it could explain LSND excess. The motivation of this Seesaw model was that there was no new physics beyond the TeV scale. By studying \mu \to 3e in this model, it is shown that the upper bound on the branching ratio requires Higgs mass m_{h} of a new scalar doublet with lepton number L=-1 needed in the model has to be about 9 TeV. The predicted branching ratio for \mu \to e\nu_{l}\bar{\nu}_{l} is too small to explain the LSND. PACS: 11.30.Hv, 14.60.PqComment: 05 pages, three figures, the version to appear in PR

    Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: Laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA)

    Get PDF
    Solid-state voltammetric (micro)electrodes have been used in a variety of environments to study biogeochemical processes. Here we show the wealth of information that has been obtained in the study of sediments, microbial mats, cultures and the water column including hydrothermal vents. Voltammetric analyzers have been developed to function with operator guidance and in unattended mode for temporal studies with an in situ electrochemical analyzer (ISEA). The electrodes can detect the presence (or absence) of a host of redox species and trace metals simultaneously. The multi-species capacity of the voltammetric electrode can be used to examine complex heterogeneous environments such as the root zone of salt marsh sediments. The data obtained with these systems clearly show that O2 and Mn2+ profiles in marine sedimentary porewaters and in microbial biofilms on metal surfaces rarely overlap indicating that O2 is not a direct oxidant for Mn2+. This lack of overlap was suggested originally by Joris Gieskes\u27 group. In waters emanating from hydrothermal vents, Fe2+, H2S and soluble molecular FeS clusters (FeSaq) are detected indicating that the reactants for the pyrite formation reaction are H2S and soluble molecular FeS clusters. Using the ISEA with electrodes at fixed positions, data collected continuously over three days near a Riftia pachyptila tubeworm field generally show that O2 and H2S anti-correlate and that H2S and temperature generally correlate. Unlike sedimentary environments, the data clearly show that Riftia live in areas where both O2 and H2S co-exist so that its endosymbiont bacteria can perform chemosynthesis. However, physical mixing of diffuse flow vent waters with oceanic bottom waters above or to the side of the tubeworm field can dampen these correlations or even reverse them. Voltammetry is a powerful technique because it provides chemical speciation data (e.g.; oxidation state and different elemental compounds/ions) as well as quantitative data. Because (micro)organisms occupy environmental niches due to the system\u27s chemistry, it is necessary to know chemical speciation. Voltammetric methods allow us to study how chemistry drives biology and how biology can affect chemistry for its own benefit

    Pilot Testing of Assessment of Capacity for Myoelectric Control (ACMC) in Evaluating Myoelectric Hand Function in Chinese Population

    Get PDF
    Upper limb amputations cause marked functional disability and lower the individual’s self-body image, with severepsychological implications. Many rehabilitation parameters are involved in the successful rehabilitation of upper limbamputations. The aim of this study was to examine the validity and reliability of the Chinese version of Assessment ofCapacity for Myoelectric Control (Chinese-ACMC) in upper limb amputated subjects and with a myo-electric-poweredprosthetic hand.To validate the Chinese version of Assessment of Capacity for Myoelectric Control (Chinese-ACMC) in upper limbamputee subjects (children and adults) with a myo-electric-powered prosthetic hand. A sample of convenience samplingof 22 subjects (11 males, 11 females) with upper limb amputation and myoelectric prosthetic hands were recordedduring a regular clinical visit for ACMC. Each subject was evaluated according to four criteria: (a) Upper Limb Amputationincluding all levels of amputation; (b) No specific pain type – no matter phantom or pain in the stump; (c) With intactcognitive function; (d) Age ranged from 12 to 40 years. With instruction, occupational therapists and prosthetic-orthoticswith at least twenty years’ clinical experience of myoelectric prosthesis training would conduct the 30-items ChineseACMC for each subject. A serial of errand tasks of activities of daily living were designed for evaluation. Individuals’ratings were repeated after 4 weeks. Through test-retest reliability, internal consistency testing, factor analysis, intra andinter factor correlation analysis. A four-factor structure, namely, “Gripping”, “Holding”, “Releasing” and “Coordinating”are identified

    Neutrino masses through see-saw mechanism in 3-3-1 models

    Full text link
    Some years ago it was shown by Ma that in the context of the electroweak standard model there are, at the tree level, only three ways to generate small neutrino masses by the see-saw mechanism via one effective dimension-five operator. Here we extend this approach to 3-3-1 chiral models showing that in this case there are several dimension-five operators and we also consider their tree level realization.Comment: RevTex, 7 pages and 4 .eps figures. Version published in Phys. Rev. D. with a change in the titl

    Deviation of Atmospheric Mixing from Maximal and Structure in the Leptonic Flavor Sector

    Full text link
    I attempt to quantify how far from maximal one should expect the atmospheric mixing angle to be given a neutrino mass-matrix that leads, at zeroth order, to a nu_3 mass-eigenstate that is 0% nu_e, 50% nu_mu, and 50% nu_tau. This is done by assuming that the solar mass-squared difference is induced by an "anarchical" first order perturbation, an approach than can naturally lead to experimentally allowed values for all oscillation parameters. In particular, both |cos 2theta_atm| (the measure for the deviation of atmospheric mixing from maximal) and |U_e3| are of order sqrt(Delta m^2_sol/Delta m^2_atm) in the case of a normal neutrino mass-hierarchy, or of order Delta m^2_sol/Delta m^2_atm in the case of an inverted one. Hence, if any of the textures analyzed here has anything to do with reality, next-generation neutrino experiments can see a nonzero cos 2theta_atm in the case of a normal mass-hierarchy, while in the case of an inverted mass-hierarchy only neutrino factories should be able to see a deviation of sin^2 2theta_atm from 1.Comment: 12 pages, no figures, references and acknowledgments adde

    On Neutrino Masses and a Low Breaking Scale of Left-Right Symmetry

    Full text link
    In left-right symmetric models (LRSM) the light neutrino masses arise from two sources: the seesaw mechanism and a VEV of an SU(2)L_L triplet. If the left-right symmetry breaking, vRv_R, is low, v_R\lsim15\TeV, the contributions to the light neutrino masses from both the seesaw mechanism and the triplet Yukawa couplings are expected to be well above the experimental bounds. We present a minimal LRSM with an additional U(1) symmetry in which the masses induced by the two sources are below the eV scale and the two-fold problem is solved. We further show that, if the U(1) symmetry is also responsible for the lepton flavor structure, the model yields a small mixing angle within the first two lepton generations.Comment: 18 pages references added published versio

    Statistical Analysis of Different Muon-antineutrino->Electron-antineutrino Searches

    Full text link
    A combined statistical analysis of the experimental results of the LSND and KARMEN \numubnueb oscillation search is presented. LSND has evidence for neutrino oscillations that is not confirmed by the KARMEN experiment. This joint analysis is based on the final likelihood results for both data sets. A frequentist approach is applied to deduce confidence regions. At a combined confidence level of 36%, there is no area of oscillation parameters compatible with both experiments. For the complementary confidence of 1-0.36=64%, there are two well defined regions of oscillation parameters (sin^2(2th),Dm^2) compatible with both experiments.Comment: 25 pages, including 10 figures, submitted to Phys. Rev.

    Electron energy loss and induced photon emission in photonic crystals

    Full text link
    The interaction of a fast electron with a photonic crystal is investigated by solving the Maxwell equations exactly for the external field provided by the electron in the presence of the crystal. The energy loss is obtained from the retarding force exerted on the electron by the induced electric field. The features of the energy loss spectra are shown to be related to the photonic band structure of the crystal. Two different regimes are discussed: for small lattice constants aa relative to the wavelength of the associated electron excitations λ\lambda, an effective medium theory can be used to describe the material; however, for aλa\sim\lambda the photonic band structure plays an important role. Special attention is paid to the frequency gap regions in the latter case.Comment: 12 pages, 7 figure

    Energy Independent Solution to the Solar Neutrino Anomaly including the SNO data

    Get PDF
    The global data on solar neutrino rates and spectrum, including the SNO charged current rate, can be explained by LMA, LOW or the energy independent solution -- corresponding to near-maximal mixing. All the three favour a mild upward renormalisation of the Cl rate. A mild downward shift of the BB neutrino flux is favoured by the energy independent and to a lesser extent the LOW solution, but not by LMA. Comparison with the ratio of SK elastic and SNO charged current scattering rates favours the LMA over the other two solutions, but by no more than 1.5σ1.5\sigma.Comment: 18 pages, latex, 3 figure

    Nonlinear ion-acoustic (IA) waves driven in a cylindrically symmetric flow

    Full text link
    By employing a self-similar, two-fluid MHD model in a cylindrical geometry, we study the features of nonlinear ion-acoustic (IA) waves which propagate in the direction of external magnetic field lines in space plasmas. Numerical calculations not only expose the well-known three shapes of nonlinear structures (sinusoidal, sawtooth, and spiky or bipolar) which are observed by numerous satellites and simulated by models in a Cartesian geometry, but also illustrate new results, such as, two reversely propagating nonlinear waves, density dips and humps, diverging and converging electric shocks, etc. A case study on Cluster satellite data is also introduced.Comment: accepted by AS
    corecore