8 research outputs found

    GeoTextMESS: result fusion with fuzzy Borda ranking in geographical information retrieval

    Get PDF
    In this paper we discuss the integration of different GIR systems by means of a fuzzy Borda method for result fusion. Two of the systems, the one by the Universidad Politécnica de Valencia and the one of the Universidad of Jaén participated to the GeoCLEF task under the name TextMess. The proposed result fusion method takes as input the document lists returned by the different systems and returns a document list where the documents are ranked according to the fuzzy Borda voting scheme. The obtained results show that the fusion method allows to improve the results of the component systems, although the fusion is not optimal, because it is effective only if the components return a similar set of relevant documents.Peer ReviewedPostprint (author’s final draft

    A PSO-Based Web Document Query Optimization Algorithm

    No full text

    Molecular similarity searching based on deep belief networks with different molecular descriptors

    No full text
    Molecular 2D similarity searching is one of the most widely used techniques for ligand-based virtual screening (LBVS). This study has used the concepts of deep learning by adapted deep belief networks (DBN) and data fusion concept with DBN to enhance the molecular similarity searching of chemical compounds in LBVS. The MDDR Datasets represented by different descriptors to convert the molecule shape to numerical values and each descriptor has different important features rather than the others. The DBN with data fusion is adapted to obtain a lower detection error probability and a higher reliability by using data from multiple distributed descriptors and analyzing the performance of combination and individual descriptors target by target and showed that the combination descriptor did better than both original descriptors. The overall results of this research showed that the use of DBN with data fusion in similarity-based is found to significantly outperform the conventional, industry-standard Tanimoto-based similarity search systems and some others benchmarks witch have been adapted by others researchers, with 1 % and 5% performance improvement in the average recall rates

    A saturated map of common genetic variants associated with human height

    No full text
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.Public Health and primary carePrevention, Population and Disease management (PrePoD

    A saturated map of common genetic variants associated with human height

    No full text
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.</p
    corecore