246 research outputs found
Exact ground state and kink-like excitations of a two dimensional Heisenberg antiferromagnet
A rare example of a two dimensional Heisenberg model with an exact dimerized
ground state is presented. This model, which can be regarded as a variation on
the kagome lattice, has several features of interest: it has a highly (but not
macroscopically) degenerate ground state; it is closely related to spin chains
studied by earlier authors; in particular, it is probably the first genuinely
two-dimensional quantum system to exhibit domain-wall-like ``kink'' excitations
normally found only in one-dimensional systems. In some limits it decouples
into non-interacting chains, purely dynamically and not because of weakening of
interchain couplings: indeed, paradoxically, this happens in the limit of
strong coupling of the chains.Comment: 4 pages, revtex, 5 figures included via epsfi
Motion of Bound Domain Walls in a Spin Ladder
The elementary excitation spectrum of the spin-
antiferromagnetic (AFM) Heisenberg chain is described in terms of a pair of
freely propagating spinons. In the case of the Ising-like Heisenberg
Hamiltonian spinons can be interpreted as domain walls (DWs) separating
degenerate ground states. In dimension , the issue of spinons as
elementary excitations is still unsettled. In this paper, we study two
spin- AFM ladder models in which the individual chains are
described by the Ising-like Heisenberg Hamiltonian. The rung exchange
interactions are assumed to be pure Ising-type in one case and Ising-like
Heisenberg in the other. Using the low-energy effective Hamiltonian approach in
a perturbative formulation, we show that the spinons are coupled in bound
pairs. In the first model, the bound pairs are delocalized due to a four-spin
ring exchange term in the effective Hamiltonian. The appropriate dynamic
structure factor is calculated and the associated lineshape is found to be
almost symmetric in contrast to the 1d case. In the case of the second model,
the bound pair of spinons lowers its kinetic energy by propagating between
chains. The results obtained are consistent with recent theoretical studies and
experimental observations on ladder-like materials.Comment: 12 pages, 7 figure
Solution of a two-leg spin ladder system
A model for a spin-1/2 ladder system with two legs is introduced. It is demonstrated that this model is solvable via the Bethe ansatz method for arbitrary values of the rung coupling J. This is achieved by a suitable mapping from the Hubbard model with appropriate twisted boundary conditions. We determine that a phase transition between gapped and gapless spin excitations occurs at the critical value J(c) = 1/2 of the rung coupling
Crossover behavior of the J1-J2 model in a staggered magnetic field
The ground states of the Heisenberg chain with the
nearest-neighbor and the next-nearest-neighbor antiferromagnetic couplings are
numerically investigated in a staggered magnetic field. While the staggered
magnetic field may induce the N\'eel-type excitation gap, and it is
characterized by the Gaussian fixed point in the spin-fluid region, the
crossover to the behavior controlled by the Ising fixed point is expected to be
observed for the spontaneously dimerized state at finite field. Treating a
low-lying excitation gap by the phenomenological renormalization-group method,
we numerically determine the massless flow connecting the Gaussian and Ising
fixed points. Further, to check the criticalities, we perform the
finite-size-scaling analysis of the excitation gap.Comment: 4 pages, 3 figure
Superconductivity from doping a spin liquid insulator: a simple one-dimensional example
We study the phase diagram of a one-dimensional Hubbard model where, in
addition to the standard nearest neighbor hopping , we also include a
next-to-nearest neighbor hopping . For strong enough on-site repulsion,
this model has a transition at half filling from a magnetic insulator with
gapless spin excitations at small to a dimerized insulator with a spin
gap at larger . We show that upon doping this model exhibits quite
interesting features, which include the presence of a metallic phase with a
spin gap and dominant superconducting fluctuations, in spite of the repulsive
interaction. More interestingly, we find that this superconducting phase can be
reached upon hole doping the magnetic insulator. The connections between this
model and the two chain models, recently object of intensive investigations,
are also discussed.Comment: 19 pages, plain LaTex using RevTex, 7 postscript figures Modified
version which excludes some LaTex commands giving problems for the previous
versio
Line shapes of dynamical correlation functions in Heisenberg chains
We calculate line shapes of correlation functions by use of complete
diagonalization data of finite chains and analytical implications from
conformal field theory, density of states, and Bethe ansatz. The numerical data
have different finite size accuracy in case of the imaginary and real parts in
the frequency and time representations of spin-correlation functions,
respectively. The low temperature, conformally invariant regime crosses over at
to a diffusive regime that in turn connects continuously to
the high temperature, interacting fermion regime. The first moment sum rule is
determined.Comment: 13 pages REVTEX, 18 figure
Spectral properties of the dimerized and frustrated chain
Spectral densities are calculated for the dimerized and frustrated S=1/2
chain using the method of continuous unitary transformations (CUTs). The
transformation to an effective triplon model is realized in a perturbative
fashion up to high orders about the limit of isolated dimers. An efficient
description in terms of triplons (elementary triplets) is possible: a detailed
analysis of the spectral densities is provided for strong and intermediate
dimerization including the influence of frustration. Precise predictions are
made for inelastic neutron scattering experiments probing the S=1 sector and
for optical experiments (Raman scattering, infrared absorption) probing the S=0
sector. Bound states and resonances influence the important continua strongly.
The comparison with the field theoretic results reveals that the sine-Gordon
model describes the low-energy features for strong to intermediate dimerization
only at critical frustration.Comment: 21 page
Decoupling of the S=1/2 antiferromagnetic zig-zag ladder with anisotropy
The spin-1/2 antiferromagnetic zig-zag ladder is studied by exact
diagonalization of small systems in the regime of weak inter-chain coupling. A
gapless phase with quasi long-range spiral correlations has been predicted to
occur in this regime if easy-plane (XY) anisotropy is present. We find in
general that the finite zig-zag ladder shows three phases: a gapless collinear
phase, a dimer phase and a spiral phase. We study the level crossings of the
spectrum,the dimer correlation function, the structure factor and the spin
stiffness within these phases, as well as at the transition points. As the
inter-chain coupling decreases we observe a transition in the anisotropic XY
case from a phase with a gap to a gapless phase that is best described by two
decoupled antiferromagnetic chains. The isotropic and the anisotropic XY cases
are found to be qualitatively the same, however, in the regime of weak
inter-chain coupling for the small systems studied here. We attribute this to a
finite-size effect in the isotropic zig-zag case that results from
exponentially diverging antiferromagnetic correlations in the weak-coupling
limit.Comment: to appear in Physical Review
Rolling Tachyon in Brane World Cosmology from Superstring Field Theory
The pressureless tachyonic matter recently found in superstring field theory
has an over-abundance problem in cosmology. We argue that this problem is
naturally solved in the brane inflationary scenario if almost all of the
tachyon energy is drained (via its coupling to the inflaton and matter fields)
to heating the universe, while the rest of the tachyon energy goes to a network
of cosmic strings (lower-dimensional BPS D-branes) produced during the tachyon
rolling at the end of inflation.Comment: 4 pages, one figure. This version quantifies constraints on various
phenomenological models for tachyon deca
Fractional S^z excitation and its bound state around the 1/3 plateau of the S=1/2 Ising-like zigzag XXZ chain
We present the microscopic view for the excitations around the 1/3 plateau
state of the Ising-like zigzag XXZ chain. We analyze the low-energy excitations
around the plateau with the degenerating perturbation theory from the Ising
limit, combined with the Bethe-form wave function. We then find that the
domain-wall particles carrying and its bound state of describe well the low-energy excitations around the 1/3 plateau state. The
formation of the bound state of the domain-walls clearly provides the
microscopic mechanism of the cusp singularities and the even-odd behavior in
the magnetization curve.Comment: 13 pages, 15 figure
- …