1,833 research outputs found

    Research on Mg-Zn-Ca Alloy as Degradable Biomaterial

    Get PDF

    Duality in the Quantum Hall Effect - the Role of Electron Spin

    Get PDF
    At low temperatures the phase diagram for the quantum Hall effect has a powerful symmetry arising from the Law of Corresponding States. This symmetry gives rise to an infinite order discrete group which is a generalisation of Kramers-Wannier duality for the two dimensional Ising model. The duality group, which is a subgroup of the modular group, is analysed and it is argued that there is a quantitative difference between a situation in which the spin splitting of electron energy levels is comparable to the cyclotron energy and one in which the spin splitting is much less than the cyclotron energy. In the former case the group of symmetries is larger than in the latter case. These duality symmetries are used to constrain the scaling functions of the theory and, under an assumption of complex meromorphicity, a unique functional form is obtained for the crossover of the conductivities between Hall states as a function of the external magnetic field. This analytic form is shown to give good agreement with experimental data. The analysis requires a consideration of the way in which longitudinal resistivities are extracted from the experimentally measured longitudinal resistances and a novel method is proposed for determining the correct normalisation for the former.Comment: 22 pages, 8 figures, typeset in LaTe

    Analytical evaluation of output current ripple amplitude in three-phase three-level inverters

    Get PDF
    Nowadays, three-phase multilevel inverters are widely employed in medium and high-power applications, increasing the power ratings, improving the output voltage quality and reducing the conducted electromagnetic interferences. Despite of numerous pulse-width modulation (PWM) techniques have been developed for multilevel inverters, a detailed analysis of the output current ripple amplitude has not been reported yet. In this study, the peak-to-peak current ripple distribution over a fundamental period is analysed in details specifically for three-level three-phase voltage source inverters for both motor-load and grid-connected applications. In particular, the peak-to-peak amplitude of the current ripple is determined analytically as a function of the modulation index. The centred PWM strategy is considered in all the developments, implemented either by carrier-based or space vector (SV) PWM methods. With this modulation, the dc bus utilisation is maximised in a simple and effective way, and a nearly-optimal behaviour is obtained to minimise the current ripple rms. The results obtained in different cases and sub-cases identified in the proposed analytical approach are verified by experimental tests with reference to three-phase three-level neutral-point clamped configuration

    Duality and Non-linear Response for Quantum Hall Systems

    Get PDF
    We derive the implications of particle-vortex duality for the electromagnetic response of Quantum Hall systems beyond the linear-response regime. This provides a first theoretical explanation of the remarkable duality which has been observed in the nonlinear regime for the electromagnetic response of Quantum Hall systems.Comment: 7 pages, 1 figure, typeset in LaTe

    Chromatin-sensitive cryptic promoters putatively drive expression of alternative protein isoforms in yeast

    Get PDF
    Cryptic transcription is widespread and generates a heterogeneous group of RNA molecules of unknown function. To improve our understanding of cryptic transcription, we investigated their transcription start site (TSS) usage, chromatin organization, and posttranscriptional consequences in Saccharomyces cerevisiae We show that TSSs of chromatin-sensitive internal cryptic transcripts retain comparable features of canonical TSSs in terms of DNA sequence, directionality, and chromatin accessibility. We define the 5' and 3' boundaries of cryptic transcripts and show that, contrary to RNA degradation-sensitive ones, they often overlap with the end of the gene, thereby using the canonical polyadenylation site, and associate to polyribosomes. We show that chromatin-sensitive cryptic transcripts can be recognized by ribosomes and may produce truncated polypeptides from downstream, in-frame start codons. Finally, we confirm the presence of the predicted polypeptides by reanalyzing N-terminal proteomic data sets. Our work suggests that a fraction of chromatin-sensitive internal cryptic promoters initiates the transcription of alternative truncated mRNA isoforms. The expression of these chromatin-sensitive isoforms is conserved from yeast to human, expanding the functional consequences of cryptic transcription and proteome complexity

    Magnetism in a lattice of spinor Bose condensates

    Full text link
    We study the ground state magnetic properties of ferromagnetic spinor Bose-Einstein condensates confined in a deep optical lattices. In the Mott insulator regime, the ``mini-condensates'' at each lattice site behave as mesoscopic spin magnets that can interact with neighboring sites through both the static magnetic dipolar interaction and the light-induced dipolar interaction. We show that such an array of spin magnets can undergo a ferromagnetic or anti-ferromagnetic phase transition under the magnetic dipolar interaction depending on the dimension of the confining optical lattice. The ground-state spin configurations and related magnetic properties are investigated in detail

    The Spectrum of the Dirac Operator on Coset Spaces with Homogeneous Gauge Fields

    Get PDF
    The spectrum and degeneracies of the Dirac operator are analysed on compact coset spaces when there is a non-zero homogeneous background gauge field which is compatible with the symmetries of the space, in particular when the gauge field is derived from the spin-connection. It is shown how the degeneracy of the lowest Landau level in the recently proposed higher dimensional quantum Hall effect is related to the Atiyah-Singer index theorem for the Dirac operator on a compact coset space.Comment: 25 pages, typeset in LaTeX, uses youngtab.st

    Processing of aluminum-graphite particulate metal matrix composites by advanced shear technology

    Get PDF
    Copyright @ 2009 ASM International. This paper was published in Journal of Materials Engineering and Performance 18(9) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.To extend the possibilities of using aluminum/graphite composites as structural materials, a novel process is developed. The conventional methods often produce agglomerated structures exhibiting lower strength and ductility. To overcome the cohesive force of the agglomerates, a melt conditioned high-pressure die casting (MC-HPDC) process innovatively adapts the well-established, high-shear dispersive mixing action of a twin screw mechanism. The distribution of particles and properties of composites are quantitatively evaluated. The adopted rheo process significantly improved the distribution of the reinforcement in the matrix with a strong interfacial bond between the two. A good combination of improved ultimate tensile strength (UTS) and tensile elongation (e) is obtained compared with composites produced by conventional processes.EPSR

    Nonabelian gauge field and dual description of fuzzy sphere

    Full text link
    In matrix models, higher dimensional D-branes are obtained by imposing a noncommutative relation to coordinates of lower dimensional D-branes. On the other hand, a dual description of this noncommutative space is provided by higher dimensional D-branes with gauge fields. Fuzzy spheres can appear as a configuration of lower dimensional D-branes in a constant R-R field strength background. In this paper, we consider a dual description of higher dimensional fuzzy spheres by introducing nonabelian gauge fields on higher dimensional spherical D-branes. By using the Born-Infeld action, we show that a fuzzy 2k2k-sphere and spherical D2k2k-branes with a nonabelian gauge field whose Chern character is nontrivial are the same objects when nn is large. We discuss a relationship between the noncommutative geometry and nonabelian gauge fields. Nonabelian gauge fields are represented by noncommutative matrices including the coordinate dependence. A similarity to the quantum Hall system is also studied.Comment: 28 page
    corecore