1,307 research outputs found

    Demography of the long-lived conifer Agathis ovata in maquis and rainforest, New Caledonia

    Get PDF

    A Comprehensive Survey of Brane Tilings

    Get PDF
    An infinite class of 4d4d N=1\mathcal{N}=1 gauge theories can be engineered on the worldvolume of D3-branes probing toric Calabi-Yau 3-folds. This kind of setup has multiple applications, ranging from the gauge/gravity correspondence to local model building in string phenomenology. Brane tilings fully encode the gauge theories on the D3-branes and have substantially simplified their connection to the probed geometries. The purpose of this paper is to push the boundaries of computation and to produce as comprehensive a database of brane tilings as possible. We develop efficient implementations of brane tiling tools particularly suited for this search. We present the first complete classification of toric Calabi-Yau 3-folds with toric diagrams up to area 8 and the corresponding brane tilings. This classification is of interest to both physicists and mathematicians alike.Comment: 39 pages. Link to Mathematica modules provide

    CHANDRA Observations of X-ray Jet Structure on kpc to Mpc Scales

    Full text link
    With its exquisite spatial resolution of better than 0.5 arcsecond, the Chandra observatory is uniquely capable of resolving and studying the spatial structure of extragalactic X-ray jets on scales of a few to a few hundred kilo-parsec. Our analyses of four recent Chandra images of quasar jets interpret the X-ray emission as inverse Compton scattering of high energy electrons on the cosmic microwave background. We infer that these jets are in bulk relativistic motion, carrying kinetic powers upwards of 10^46 ergs/s to distances of hundreds of kpc, with very high efficiency.Comment: 4 pages, 3 figures, to be published in the proceedings of the Bologna jet workshop, "The Physics of Relativistic Jets in the CHANDRA and XMM Era.

    Understanding the Effects of Spaceflight on Head-trunk Coordination during Walking and Obstacle Avoidance

    Get PDF
    Prolonged exposure to spaceflight conditions results in a battery of physiological changes, some of which contribute to sensorimotor and neurovestibular deficits. Upon return to Earth, functional performance changes are tested using the Functional Task Test (FTT), which includes an obstacle course to observe postflight balance and postural stability, specifically during turning. The goal of this study was to quantify changes in movement strategies during turning events by observing the latency between headandtrunk coordinated movements. It was hypothesized that subjects experiencing neurovestibular adaptations would exhibit headtotrunk locking ('en bloc' movement) during turning, exhibited by a decrease in latency between head and trunk movement. FTT data samples were collected from ISS missions. Samples were analyzed three times preexposure, immediately postexposure (1 day post) and 2to3 times during recovery from the microgravity environment. Two 3D inertial measurements units (XSens MTx) were attached to subjects, one on the head and one on the upper back. This study focused primarily on the yaw movements about the subject's center of rotation. Time differences (latency) between head and trunk movement were calculated at two points on the obstacle course: the first turn to enter the obstacle course (approximately 90 turn) and averaged across a slalom obstacle portion, consisting of three turns (approximately three 90 turns). Preliminary analysis of the data shows a trend toward decreasing headtotrunk movement latency during postflight ambulation in slalom turning after reintroduction to Earth gravity in ISS astronauts. It is clear that changes in movement strategies are adopted during exposure to the microgravity environment and upon reintroduction to a gravity environment. Most ISS subjects exhibit symptoms of neurovestibular changes ('en bloc head and trunk movement) which may impact their ability to perform postflight functional tasks

    Quantum driven Bounce of the future Universe

    Full text link
    It is demonstrated that due to back-reaction of quantum effects, expansion of the universe stops at its maximum and takes a turnaround. Later on, it contracts to a very small size in finite future time. This phenomenon is followed by a " bounce" with re-birth of an exponentially expanding non-singular universe

    IPS-2: the second generation of a parallel program measurement system

    Full text link

    Advances in aquatic insect systematics and biodiversity in the Neotropics: introduction

    Get PDF
    The Neotropical Region or Neotropics, contains vast expanses of rain forest and river systems representing some of the most biologically diverse ecosystems on Earth, but much of its resident biota remains undescribed and undocumented, and some of it is at risk of extirpation and extinction. Anthropogenic disturbances, especially deforestation, urbanization, and climate change, threaten the integrity of the Neotropics and its biodiversity. In the Neotropics, freshwater habitats are particularly susceptible to environmental stressors and freshwater species throughout the Neotropics have experienced marked declines greater than those of other groups when compared to marine and terrestrial systems. Advances in taxonomic descriptions, preparation of keys, and faunal assessments will aid future studies as well as conservation efforts

    A Loop-Aware Search Strategy for Automated Performance Analysis

    Full text link
    Automated online search is a powerful technique for performance diagnosis. Such a search can change the types of experiments it performs while the program is running, making decisions based on live performance data. Previous research has addressed search speed and scaling searches to large codes and many nodes. This paper explores using a finer granularity for the bottlenecks that we locate in an automated online search, i.e., refining the search to bottlenecks localized to loops. The ability to insert and remove instrumentation on-the-fly means an online search can utilize fine-grain program structure in ways that are infeasible using other performance diagnosis techniques. We automatically detect loops in a program�s binary control flow graph and use this information to efficiently instrument loops. We implemented our new strategy in an existing automated online performance tool, Paradyn. Results for several sequential and parallel applications show that a loop-aware search strategy can increase bottleneck precision without compromising search time or cost

    Condensate cosmology -- dark energy from dark matter

    Get PDF
    Imagine a scenario in which the dark energy forms via the condensation of dark matter at some low redshift. The Compton wavelength therefore changes from small to very large at the transition, unlike quintessence or metamorphosis. We study CMB, large scale structure, supernova and radio galaxy constraints on condensation by performing a 4 parameter likelihood analysis over the Hubble constant and the three parameters associated with Q, the condensate field: Omega_Q, w_f and z_t (energy density and equation of state today, and redshift of transition). Condensation roughly interpolates between Lambda CDM (for large z_t) and sCDM (low z_t) and provides a slightly better fit to the data than Lambda CDM. We confirm that there is no degeneracy in the CMB between H and z_t and discuss the implications of late-time transitions for the Lyman-alpha forest. Finally we discuss the nonlinear phase of both condensation and metamorphosis, which is much more interesting than in standard quintessence models.Comment: 13 pages, 13 colour figures. Final version with discussion of TE cross-correlation spectra for condensation and metamorphosis in light of the WMAP result
    corecore