1,040 research outputs found

    Is classical reality completely deterministic?

    Get PDF
    The concept of determinism for a classical system is interpreted as the requirement that the solution to the Cauchy problem for the equations of motion governing this system be unique. This requirement is generally assumed to hold for all autonomous classical systems. We give counterexamples of this view. Our analysis of classical electrodynamics in a world with one temporal and one spatial dimension shows that the solution to the Cauchy problem with the initial conditions of a particular type is not unique. Therefore, random behavior of closed classical systems is indeed possible. This finding provides a qualitative explanation of how classical strings can split. We propose a modified path integral formulation of classical mechanics to include indeterministic systems.Comment: Replace the paper with a revised versio

    Supernova 1987A did not test the neutrino mass hierarchy

    Get PDF
    We dispel the misconception that data from SN 1987A favor the normal neutrino mass hierarchy over the inverted hierarchy for \sin^2 \theta_{13} \gsim 10^{-4}. We find comparable fits for the two hierarchies. No bound can be placed on the mixing angle θ13\theta_{13} even at the 1σ\sigma level.Comment: 15 pages, 9 figure

    Method to compute the stress-energy tensor for the massless spin 1/2 field in a general static spherically symmetric spacetime

    Get PDF
    A method for computing the stress-energy tensor for the quantized, massless, spin 1/2 field in a general static spherically symmetric spacetime is presented. The field can be in a zero temperature state or a non-zero temperature thermal state. An expression for the full renormalized stress-energy tensor is derived. It consists of a sum of two tensors both of which are conserved. One tensor is written in terms of the modes of the quantized field and has zero trace. In most cases it must be computed numerically. The other tensor does not explicitly depend on the modes and has a trace equal to the trace anomaly. It can be used as an analytic approximation for the stress-energy tensor and is equivalent to other approximations that have been made for the stress-energy tensor of the massless spin 1/2 field in static spherically symmetric spacetimes.Comment: 34 pages, no figure

    Motion of Inertial Observers Through Negative Energy

    Get PDF
    Recent research has indicated that negative energy fluxes due to quantum coherence effects obey uncertainty principle-type inequalities of the form |\Delta E|\,{\Delta \tau} \lprox 1\,. Here ΔE|\Delta E| is the magnitude of the negative energy which is transmitted on a timescale Δτ\Delta \tau. Our main focus in this paper is on negative energy fluxes which are produced by the motion of observers through static negative energy regions. We find that although a quantum inequality appears to be satisfied for radially moving geodesic observers in two and four-dimensional black hole spacetimes, an observer orbiting close to a black hole will see a constant negative energy flux. In addition, we show that inertial observers moving slowly through the Casimir vacuum can achieve arbitrarily large violations of the inequality. It seems likely that, in general, these types of negative energy fluxes are not constrained by inequalities on the magnitude and duration of the flux. We construct a model of a non-gravitational stress-energy detector, which is rapidly switched on and off, and discuss the strengths and weaknesses of such a detector.Comment: 18pp + 1 figure(not included, available on request), in LATEX, TUPT-93-

    A Planck-scale axion and SU(2) Yang-Mills dynamics: Present acceleration and the fate of the photon

    Full text link
    From the time of CMB decoupling onwards we investigate cosmological evolution subject to a strongly interacting SU(2) gauge theory of Yang-Mills scale Λ104\Lambda\sim 10^{-4} eV (masquerading as the U(1)YU(1)_{Y} factor of the SM at present). The viability of this postulate is discussed in view of cosmological and (astro)particle physics bounds. The gauge theory is coupled to a spatially homogeneous and ultra-light (Planck-scale) axion field. As first pointed out by Frieman et al., such an axion is a viable candidate for quintessence, i.e. dynamical dark energy, being associated with today's cosmological acceleration. A prediction of an upper limit Δtmγ=0\Delta t_{m_\gamma=0} for the duration of the epoch stretching from the present to the point where the photon starts to be Meissner massive is obtained: Δtmγ=02.2\Delta t_{m_\gamma=0}\sim 2.2 billion years.Comment: v3: consequences of an error in evolution equation for coupling rectified, only a minimal change in physics results, two refs. adde

    A Field-theoretical Interpretation of the Holographic Renormalization Group

    Get PDF
    A quantum-field theoretical interpretation is given to the holographic RG equation by relating it to a field-theoretical local RG equation which determines how Weyl invariance is broken in a quantized field theory. Using this approach we determine the relation between the holographic C theorem and the C theorem in two-dimensional quantum field theory which relies on the Zamolodchikov metric. Similarly we discuss how in four dimensions the holographic C function is related to a conjectured field-theoretical C function. The scheme dependence of the holographic RG due to the possible presence of finite local counterterms is discussed in detail, as well as its implications for the holographic C function. We also discuss issues special to the situation when mass deformations are present. Furthermore we suggest that the holographic RG equation may also be obtained from a bulk diffeomorphism which reduces to a Weyl transformation on the boundary.Comment: 24 pages, LaTeX, no figures; references added, typos corrected, paragraph added to section

    Measurement precision and evaluation of the diameter profiles of single wool fibers

    Full text link
    A recent model of the Single Fiber Analyzer 3001 (SIFAN3001) was firstly employed to obtain the single wool fiber diameter profiles (SfFDPs) at multiple orientations. The results showed that using SIFAN3001 to measure fiber diameter at four orientations for 50 single fibers randomly sub-sampled from each mid-side sample can produce average fiber diameter profiles (AS fFDPs) of fibers within staples. Within the testing regime used, the precision estimates for the total samples were &plusmn;1.3 &micro;m for the mean fiber diameter of staples and 1.4 &micro;m for the average fiber diameter of the AS fFDPs at each scanned step in the diameter profile. The mean diameter ratio (ellipticity) obtained from the four orientations was 1.08&plusmn;0.01, confirming that the Merino wool fibers under review were elliptical rather than circular. The elliptical morphology of wool fibers and the precision of the fiber diameter measurement at each point along a fiber will be considered in the development of a mechanical model of Staple Strength testing.<br /

    Digital Quantum Simulation with Rydberg Atoms

    Full text link
    We discuss in detail the implementation of an open-system quantum simulator with Rydberg states of neutral atoms held in an optical lattice. Our scheme allows one to realize both coherent as well as dissipative dynamics of complex spin models involving many-body interactions and constraints. The central building block of the simulation scheme is constituted by a mesoscopic Rydberg gate that permits the entanglement of several atoms in an efficient, robust and quick protocol. In addition, optical pumping on ancillary atoms provides the dissipative ingredient for engineering the coupling between the system and a tailored environment. As an illustration, we discuss how the simulator enables the simulation of coherent evolution of quantum spin models such as the two-dimensional Heisenberg model and Kitaev's toric code, which involves four-body spin interactions. We moreover show that in principle also the simulation of lattice fermions can be achieved. As an example for controlled dissipative dynamics, we discuss ground state cooling of frustration-free spin Hamiltonians.Comment: submitted to special issue "Quantum Information with Neutral Particles" of "Quantum Information Processing
    corecore