119 research outputs found
Domain wall dynamics of the Ising chains in a transverse field
We show that the dynamics of an Ising spin chain in a transverse field
conserves the number of domains (strings of down spins in an up-spin
background) at discrete times. This enables the determination of the
eigenfunctions of the time-evolution operator, and the dynamics of initial
states with domains. The transverse magnetization is shown to be identically
zero in all sectors with a fixed number of domains. For an initial state with a
single string of down spins, the local magnetization, the equal-time and
double-time spin-spin correlation functions, are calculated analytically as
functions of time and the initial string size. The domain size distribution
function can be expressed as a simple integral involving Bessel functions.Comment: 4 pages with three figure
Griffiths-McCoy Singularities in the Random Transverse-Field Ising Spin Chain
We consider the paramagnetic phase of the random transverse-field Ising spin
chain and study the dynamical properties by numerical methods and scaling
considerations. We extend our previous work [Phys. Rev. B 57, 11404 (1998)] to
new quantities, such as the non-linear susceptibility, higher excitations and
the energy-density autocorrelation function. We show that in the Griffiths
phase all the above quantities exhibit power-law singularities and the
corresponding critical exponents, which vary with the distance from the
critical point, can be related to the dynamical exponent z, the latter being
the positive root of [(J/h)^{1/z}]_av=1. Particularly, whereas the average spin
autocorrelation function in imaginary time decays as [G]_av(t)~t^{-1/z}, the
average energy-density autocorrelations decay with another exponent as
[G^e]_av(t)~t^{-2-1/z}.Comment: 8 pages RevTeX, 8 eps-figures include
Dynamic Scaling in Diluted Systems Phase Transitions: Deactivation trough Thermal Dilution
Activated scaling is confirmed to hold in transverse field induced phase
transitions of randomly diluted Ising systems. Quantum Monte Carlo calculations
have been made not just at the percolation threshold but well bellow and above
it including the Griffiths-McCoy phase. A novel deactivation phenomena in the
Griffiths-McCoy phase is observed using a thermal (in contrast to random)
dilution of the system.Comment: 4 pages, 4 figures, RevTe
Finite-size scaling properties of random transverse-field Ising chains : Comparison between canonical and microcanonical ensembles for the disorder
The Random Transverse Field Ising Chain is the simplest disordered model
presenting a quantum phase transition at T=0. We compare analytically its
finite-size scaling properties in two different ensembles for the disorder (i)
the canonical ensemble, where the disorder variables are independent (ii) the
microcanonical ensemble, where there exists a global constraint on the disorder
variables. The observables under study are the surface magnetization, the
correlation of the two surface magnetizations, the gap and the end-to-end
spin-spin correlation for a chain of length . At criticality, each
observable decays typically as in both ensembles, but the
probability distributions of the rescaled variable are different in the two
ensembles, in particular in their asymptotic behaviors. As a consequence, the
dependence in of averaged observables differ in the two ensembles. For
instance, the correlation decays algebraically as 1/L in the canonical
ensemble, but sub-exponentially as in the microcanonical
ensemble. Off criticality, probability distributions of rescaled variables are
governed by the critical exponent in both ensembles, but the following
observables are governed by the exponent in the microcanonical
ensemble, instead of the exponent in the canonical ensemble (a) in the
disordered phase : the averaged surface magnetization, the averaged correlation
of the two surface magnetizations and the averaged end-to-end spin-spin
correlation (b) in the ordered phase : the averaged gap. In conclusion, the
measure of the rare events that dominate various averaged observables can be
very sensitive to the microcanonical constraint.Comment: 24 page
The effect of rare regions on a disordered itinerant quantum antiferromagnet with cubic anisotropy
We study the quantum phase transition of an itinerant antiferromagnet with
cubic anisotropy in the presence of quenched disorder, paying particular
attention to the locally ordered spatial regions that form in the Griffiths
region. We derive an effective action where these rare regions are described in
terms of static annealed disorder. A one loop renormalization group analysis of
the effective action shows that for order parameter dimensions the rare
regions destroy the conventional critical behavior. For order parameter
dimensions the critical behavior is not influenced by the rare regions,
it is described by the conventional dirty cubic fixed point. We also discuss
the influence of the rare regions on the fluctuation-driven first-order
transition in this system.Comment: 6 pages RevTe
Broadening of a nonequilibrium phase transition by extended structural defects
We study the effects of quenched extended impurities on nonequilibrium phase
transitions in the directed percolation universality class. We show that these
impurities have a dramatic effect: they completely destroy the sharp phase
transition by smearing. This is caused by rare strongly coupled spatial regions
which can undergo the phase transition independently from the bulk system. We
use extremal statistics to determine the stationary state as well as the
dynamics in the tail of the smeared transition, and we illustrate the results
by computer simulations.Comment: 4 pages, 4 eps figures, final version as publishe
Recommended from our members
Fluctuations in two-dimensional six-vertex systems
The character of polarization correlations in six-vertex systems is discussed. With the aid of a connection between the 1-d Heisenberg--Ising chain and the six-vertex problem, existing results for the chain correlations are used to obtain information about long-wavelength polarization correlations in six-vertex models. These results are compared with a neutron scattering study of 2-d polarization correlations in the layered compound copper formate tetrahydrate. Because the six-vertex model is equivalent to a particular roughening model, these results also explicitly predict the critical behavior of that roughening model just above its roughening temperature. The results correspond to the predictions of Kosterlitz and Thouless for the phase transition in the 2-d Coulomb gas. 5 figures
New Results for the Correlation Functions of the Ising Model and the Transverse Ising Chain
In this paper we show how an infinite system of coupled Toda-type nonlinear
differential equations derived by one of us can be used efficiently to
calculate the time-dependent pair-correlations in the Ising chain in a
transverse field. The results are seen to match extremely well long large-time
asymptotic expansions newly derived here. For our initial conditions we use new
long asymptotic expansions for the equal-time pair correlation functions of the
transverse Ising chain, extending an old result of T.T. Wu for the 2d Ising
model. Using this one can also study the equal-time wavevector-dependent
correlation function of the quantum chain, a.k.a. the q-dependent diagonal
susceptibility in the 2d Ising model, in great detail with very little
computational effort.Comment: LaTeX 2e, 31 pages, 8 figures (16 eps files). vs2: Two references
added and minor changes of style. vs3: Corrections made and reference adde
On the critical behavior of disordered quantum magnets: The relevance of rare regions
The effects of quenched disorder on the critical properties of itinerant
quantum antiferromagnets and ferromagnets are considered. Particular attention
is paid to locally ordered spatial regions that are formed in the presence of
quenched disorder even when the bulk system is still in the paramagnetic phase.
These rare regions or local moments are reflected in the existence of spatially
inhomogeneous saddle points of the Landau-Ginzburg-Wilson functional. We derive
an effective theory that takes into account small fluctuations around all of
these saddle points. The resulting free energy functional contains a new term
in addition to those obtained within the conventional perturbative approach,
and it comprises what would be considered non-perturbative effects within the
latter. A renormalization group analysis shows that in the case of
antiferromagnets, the previously found critical fixed point is unstable with
respect to this new term, and that no stable critical fixed point exists at
one-loop order. This is contrasted with the case of itinerant ferromagnets,
where we find that the previously found critical behavior is unaffected by the
rare regions due to an effective long-ranged interaction between the order
parameter fluctuations.Comment: 16 pp., REVTeX, epsf, 2 figs, final version as publishe
Smeared phase transition in a three-dimensional Ising model with planar defects: Monte-Carlo simulations
We present results of large-scale Monte Carlo simulations for a
three-dimensional Ising model with short range interactions and planar defects,
i.e., disorder perfectly correlated in two dimensions. We show that the phase
transition in this system is smeared, i.e., there is no single critical
temperature, but different parts of the system order at different temperatures.
This is caused by effects similar to but stronger than Griffiths phenomena. In
an infinite-size sample there is an exponentially small but finite probability
to find an arbitrary large region devoid of impurities. Such a rare region can
develop true long-range order while the bulk system is still in the disordered
phase. We compute the thermodynamic magnetization and its finite-size effects,
the local magnetization, and the probability distribution of the ordering
temperatures for different samples. Our Monte-Carlo results are in good
agreement with a recent theory based on extremal statistics.Comment: 9 pages, 6 eps figures, final version as publishe
- …