105 research outputs found

    Environmental Design for Patient Families in Intensive Care Units

    Full text link

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Increased Number of White Matter Lesions in Patients with Familial Cerebral Cavernous Malformations

    No full text
    BACKGKROUND AND PURPOSE: Familial cerebral cavernous malformations, an autosomal dominant disorder, result in excess morbidity and mortality in affected patients. The disorder is most prevalent in the Southwest United States, where the affected families are most often carriers of the CCM1-KRIT1 Common Hispanic Mutation. The brain and spinal cord parenchyma in these individuals is usually affected by multiple cavernous malformations. Previous studies have shown abnormalities of endothelial cell junctions and the blood-brain barrier in cerebral cavernous malformations. Endothelial cell abnormalities have also been described in pathologic studies of white matter hyperintensities. We compared the prevalence of white matter hyperintensities in a population with known familial cerebral cavernous malformations. MATERIALS AND METHODS: We examined 191 subjects with familial cerebral cavernous malformations who were enrolled into an institutional review board-approved study. All carry the same Common Hispanic Mutation in the CCM1 gene. Each subject underwent 3TMR imaging, including gradient recalled-echo, SWI, and FLAIR sequences. The number of cavernous malformations and the number of nonhemorrhagic white matter hyperintensities were counted. Subjects older than 60 yearsof age were excluded due to the high prevalence of white matter lesions in this population, and children younger than 6 were excluded due to potential sedation requirements. Logistic regression analysis was performed to determine the prevalence of abnormal white matter hyperintensities in those with familial cerebral cavernous malformations compared with healthy controls or those with sporadic cerebral cavernous malformation within the familial cerebral cavernous malformations group; it was also performed to evaluate the associations between abnormal white matter hyperintensities and age, sex, headaches, thyroid disease, diabetes, hypertension, hyperlipidemia, seizure history, or modified Rankin Scale score. RESULTS: Familial CCM1 carriers have a higher prevalence of abnormal white matter hyperintensities (15.4%) compared with both control populations (2.1% and 2.5%, respectively) (p<0.05). Logistic regression showed no statistical association with sex, headaches, hyperlipidemia, hypertension, thyroid disease, seizure history, number of cerebral cavernous malformations, or modified Rankin Scale score among those with familial cerebral cavernous malformation. An expected correlation with age was shown. CONCLUSIONS: Familial CCM1 carriers have not only an increased number of cerebral cavernous malformations but also an increased number of white matter T2 hyperintensities, spatially distinct from cerebral cavernous malformations, which exceeded that of a healthy population. Clinical findings did not explain the association with abnormal white matter hyperintensities in the familial cerebral cavernous malformation population. To our knowledge, these relationships have not been previously reported. This finding suggests an additional manifestation of endothelial abnormalities in this population
    • 

    corecore