29 research outputs found
Testing homogeneity with galaxy number counts : light-cone metric and general low-redshift expansion for a central observer in a matter dominated isotropic universe without cosmological constant
As an alternative to dark energy it has been suggested that we may be at the
center of an inhomogeneous isotropic universe described by a
Lemaitre-Tolman-Bondi (LTB) solution of Einstein's field equations. In order to
test this hypothesis we calculate the general analytical formula to fifth order
for the redshift spherical shell mass. Using the same analytical method we
write the metric in the light-cone by introducing a gauge invariant quantity
which together with the luminosity distance completely
determine the light-cone geometry of a LTB model.Comment: 13 page
Cosmic distance-duality as probe of exotic physics and acceleration
In cosmology, distances based on standard candles (e.g. supernovae) and
standard rulers (e.g. baryon oscillations) agree as long as three conditions
are met: (1) photon number is conserved, (2) gravity is described by a metric
theory with (3) photons travelling on unique null geodesics. This is the
content of distance-duality (the reciprocity relation) which can be violated by
exotic physics. Here we analyse the implications of the latest cosmological
data sets for distance-duality. While broadly in agreement and confirming
acceleration we find a 2-sigma violation caused by excess brightening of SN-Ia
at z > 0.5, perhaps due to lensing magnification bias. This brightening has
been interpreted as evidence for a late-time transition in the dark energy but
because it is not seen in the d_A data we argue against such an interpretation.
Our results do, however, rule out significant SN-Ia evolution and extinction:
the "replenishing" grey-dust model with no cosmic acceleration is excluded at
more than 4-sigma despite this being the best-fit to SN-Ia data alone, thereby
illustrating the power of distance-duality even with current data sets.Comment: 6 pages, 4 colour figures. Version accepted as a Rapid Communication
in PR
Corrections to the apparent value of the cosmological constant due to local inhomogeneities
Supernovae observations strongly support the presence of a cosmological
constant, but its value, which we will call apparent, is normally determined
assuming that the Universe can be accurately described by a homogeneous model.
Even in the presence of a cosmological constant we cannot exclude nevertheless
the presence of a small local inhomogeneity which could affect the apparent
value of the cosmological constant. Neglecting the presence of the
inhomogeneity can in fact introduce a systematic misinterpretation of
cosmological data, leading to the distinction between an apparent and true
value of the cosmological constant. We establish the theoretical framework to
calculate the corrections to the apparent value of the cosmological constant by
modeling the local inhomogeneity with a solution. Our assumption
to be at the center of a spherically symmetric inhomogeneous matter
distribution correspond to effectively calculate the monopole contribution of
the large scale inhomogeneities surrounding us, which we expect to be the
dominant one, because of other observations supporting a high level of isotropy
of the Universe around us.
By performing a local Taylor expansion we analyze the number of independent
degrees of freedom which determine the local shape of the inhomogeneity, and
consider the issue of central smoothness, showing how the same correction can
correspond to different inhomogeneity profiles. Contrary to previous attempts
to fit data using large void models our approach is quite general. The
correction to the apparent value of the cosmological constant is in fact
present for local inhomogeneities of any size, and should always be taken
appropriately into account both theoretically and observationally.Comment: 16 pages,new sections added analyzing central smoothness and accuracy
of the Taylor expansion approach, Accepted for publication by JCAP. An essay
based on this paper received honorable mention in the 2011 Essay Context of
the Gravity Research Foundatio
Can the cosmological constant be mimicked by smooth large-scale inhomogeneities for more than one observable?
As an alternative to dark energy it has been suggested that we may be at the
center of an inhomogeneous isotropic universe described by a
Lemaitre-Tolman-Bondi (LTB) solution of Einstein's field equations. In order to
test such an hypothesis we calculate the low redshift expansion of the
luminosity distance and the redshift spherical shell mass density
for a central observer in a LTB space without cosmological constant and
show how they cannot fit the observations implied by a model if
the conditions to avoid a weak central singularity are imposed, i.e. if the
matter distribution is smooth everywhere. Our conclusions are valid for any
value of the cosmological constant, not only for as
implied by previous proofs that has to be positive in a smooth LTB
space, based on considering only the luminosity distance.
The observational signatures of smooth LTB matter dominated models are
fundamentally different from the ones of models not only because
it is not possible to reproduce a negative apparent central deceleration
, but because of deeper differences in their space-time geometry
which make impossible the inversion problem when more than one observable is
considered, and emerge at any redshift, not only for .Comment: 18 pages, corrected a typo in the definition of the energy density
which doesn't change the conclusion, references adde
Effects of inhomogeneities on apparent cosmological observables: "fake" evolving dark energy
Using the exact Lemaitre-Bondi-Tolman solution with a non-vanishing
cosmological constant , we investigate how the presence of a local
spherically-symmetric inhomogeneity can affect apparent cosmological
observables, such as the deceleration parameter or the effective equation of
state of dark energy (DE), derived from the luminosity distance under the
assumption that the real space-time is exactly homogeneous and isotropic. The
presence of a local underdensity is found to produce apparent phantom behavior
of DE, while a locally overdense region leads to apparent quintessence
behavior. We consider relatively small large scale inhomogeneities which today
are not linear and could be seeded by primordial curvature perturbations
compatible with CMB bounds. Our study shows how observations in an
inhomogeneous CDM universe with initial conditions compatible with the
inflationary beginning, if interpreted under the wrong assumption of
homogeneity, can lead to the wrong conclusion about the presence of "fake"
evolving dark energy instead of .Comment: 22 pages, 19 figures,Final version to appear in European Physical
Journal
Observational Constraints of Modified Chaplygin Gas in Loop Quantum Cosmology
We have considered the FRW universe in loop quantum cosmology (LQC) model
filled with the dark matter (perfect fluid with negligible pressure) and the
modified Chaplygin gas (MCG) type dark energy. We present the Hubble parameter
in terms of the observable parameters , and
with the redshift and the other parameters like , , and .
From Stern data set (12 points), we have obtained the bounds of the arbitrary
parameters by minimizing the test. The best-fit values of the
parameters are obtained by 66%, 90% and 99% confidence levels. Next due to
joint analysis with BAO and CMB observations, we have also obtained the bounds
of the parameters () by fixing some other parameters and .
From the best fit of distance modulus for our theoretical MCG model in
LQC, we concluded that our model is in agreement with the union2 sample data.Comment: 14 pages, 10 figures, Accepted in EPJC. arXiv admin note: text
overlap with arXiv:astro-ph/0311622 by other author
Equation of state for Universe from similarity symmetries
In this paper we proposed to use the group of analysis of symmetries of the
dynamical system to describe the evolution of the Universe. This methods is
used in searching for the unknown equation of state. It is shown that group of
symmetries enforce the form of the equation of state for noninteracting scaling
multifluids. We showed that symmetries give rise the equation of state in the
form and energy density
, which
is commonly used in cosmology. The FRW model filled with scaling fluid (called
homological) is confronted with the observations of distant type Ia supernovae.
We found the class of model parameters admissible by the statistical analysis
of SNIa data. We showed that the model with scaling fluid fits well to
supernovae data. We found that and (), which can correspond to (hyper) phantom fluid, and to a
high density universe. However if we assume prior that
then the favoured model is close to concordance
CDM model. Our results predict that in the considered model with
scaling fluids distant type Ia supernovae should be brighter than in
CDM model, while intermediate distant SNIa should be fainter than in
CDM model. We also investigate whether the model with scaling fluid is
actually preferred by data over CDM model. As a result we find from
the Akaike model selection criterion prefers the model with noninteracting
scaling fluid.Comment: accepted for publication versio
Validity of Generalized Second Law of Thermodynamics in the Logamediate and Intermediate scenarios of the Universe
In this work, we have investigated the validity of the generalized second law
of thermodynamics in logamediate and intermediate scenarios of the universe
bounded by the Hubble, apparent, particle and event horizons using and without
using first law of thermodynamics. We have observed that the GSL is valid for
Hubble, apparent, particle and event horizons of the universe in the
logamediate scenario of the universe using first law and without using first
law. Similarly the GSL is valid for all horizons in the intermediate scenario
of the universe using first law. Also in the intermediate scenario of the
universe, the GSL is valid for Hubble, apparent and particle horizons but it
breaks down whenever we consider the universe enveloped by the event horizon
Cosmological evolution of interacting dark energy in Lorentz violation
The cosmological evolution of an interacting scalar field model in which the
scalar field interacts with dark matter, radiation, and baryon via Lorentz
violation is investigated. We propose a model of interaction through the
effective coupling . Using dynamical system analysis, we study the
linear dynamics of an interacting model and show that the dynamics of critical
points are completely controlled by two parameters. Some results can be
mentioned as follows. Firstly, the sequence of radiation, the dark matter, and
the scalar field dark energy exist and baryons are sub dominant. Secondly, the
model also allows the possibility of having a universe in the phantom phase
with constant potential. Thirdly, the effective gravitational constant varies
with respect to time through . In particular, we consider a simple
case where has a quadratic form and has a good agreement with the
modified CDM and quintessence models. Finally, we also calculate the
first post--Newtonian parameters for our model.Comment: 14 pages, published versio
A minimal set of invariants as a systematic approach to higher order gravity models: Physical and Cosmological Constraints
We compare higher order gravity models to observational constraints from
magnitude-redshift supernova data, distance to the last scattering surface of
the CMB, and Baryon Acoustic Oscillations. We follow a recently proposed
systematic approach to higher order gravity models based on minimal sets of
curvature invariants, and select models that pass some physical acceptability
conditions (free of ghost instabilities, real and positive propagation speeds,
and free of separatrices). Models that satisfy these physical and observational
constraints are found in this analysis and do provide fits to the data that are
very close to those of the LCDM concordance model. However, we find that the
limitation of the models considered here comes from the presence of
superluminal mode propagations for the constrained parameter space of the
models.Comment: 12 pages, 6 figure