24 research outputs found

    Dynamics of 2D pancake vortices in layered superconductors

    Full text link
    The dynamics of 2D pancake vortices in Josephson-coupled superconducting/normal - metal multilayers is considered within the time-dependent Ginzburg-Landau theory. For temperatures close to TcT_{c} a viscous drag force acting on a moving 2D vortex is shown to depend strongly on the conductivity of normal metal layers. For a tilted vortex line consisting of 2D vortices the equation of viscous motion in the presence of a transport current parallel to the layers is obtained. The specific structure of the vortex line core leads to a new dynamic behavior and to substantial deviations from the Bardeen-Stephen theory. The viscosity coefficient is found to depend essentially on the angle γ\gamma between the magnetic field B{\bf B} and the c{\bf c} axis normal to the layers. For field orientations close to the layers the nonlinear effects in the vortex motion appear even for slowly moving vortex lines (when the in-plane transport current is much smaller than the Ginzburg-Landau critical current). In this nonlinear regime the viscosity coefficient depends logarithmically on the vortex velocity VV.Comment: 15 pages, revtex, no figure

    Fluctuations and Intrinsic Pinning in Layered Superconductors

    Full text link
    A flux liquid can condense into a smectic crystal in a pure layered superconductors with the magnetic field oriented nearly parallel to the layers. If the smectic order is commensurate with the layering, this crystal is {\sl stable} to point disorder. By tilting and adjusting the magnitude of the applied field, both incommensurate and tilted smectic and crystalline phases are found. We discuss transport near the second order smectic freezing transition, and show that permeation modes lead to a small non--zero resistivity and large but finite tilt modulus in the smectic crystal.Comment: 4 pages + 1 style file + 1 figure (as uufile) appended, REVTEX 3.

    Dynamic transitions between metastable states in a superconducting ring

    Full text link
    Applying the time-dependent Ginzburg-Landau equations, transitions between metastable states of a superconducting ring are investigated in the presence of an external magnetic field. It is shown that if the ring exhibits several metastable states at a particular magnetic field, the transition from one metastable state to another one is governed by both the relaxation time of the absolute value of the order parameter tau_{|psi|} and the relaxation time of the phase of the order parameter tau_{phi}. We found that the larger the ratio tau_{|psi|}tau_{phi} the closer the final state will be to the absolute minimum of the free energy, i.e. the thermodynamic equilibrium. The transition to the final state occurs through a subsequent set of single phase slips at a particular point along the ring.Comment: 7 pages, 6 figures, Revtex 4.0 styl

    Instantons for Vacuum Decay at Finite Temperature in the Thin Wall Limit

    Full text link
    In N+1N+1 dimensions, false vacuum decay at zero temperature is dominated by the O(N+1)O(N+1) symmetric instanton, a sphere of radius R0R_0, whereas at temperatures T>>R01T>>R_0^{-1}, the decay is dominated by a `cylindrical' (static) O(N)O(N) symmetric instanton. We study the transition between these two regimes in the thin wall approximation. Taking an O(N)O(N) symmetric ansatz for the instantons, we show that for N=2N=2 and N=3N=3 new periodic solutions exist in a finite temperature range in the neighborhood of TR01T\sim R_0^{-1}. However, these solutions have higher action than the spherical or the cylindrical one. This suggests that there is a sudden change (a first order transition) in the derivative of the nucleation rate at a certain temperature TT_*, when the static instanton starts dominating. For N=1N=1, on the other hand, the new solutions are dominant and they smoothly interpolate between the zero temperature instanton and the high temperature one, so the transition is of second order. The determinantal prefactors corresponding to the `cylindrical' instantons are discussed, and it is pointed out that the entropic contributions from massless excitations corresponding to deformations of the domain wall give rise to an exponential enhancement of the nucleation rate for T>>R01T>>R_0^{-1}.Comment: 24 pages, 7 figures available upon request, DAMTP-R-94/

    Onset of Vortices in Thin Superconducting Strips and Wires

    Full text link
    Spontaneous nucleation and the consequent penetration of vortices into thin superconducting films and wires, subjected to a magnetic field, can be considered as a nonlinear stage of primary instability of the current-carrying superconducting state. The development of the instability leads to the formation of a chain of vortices in strips and helicoidal vortex lines in wires. The boundary of instability was obtained analytically. The nonlinear stage was investigated by simulations of the time-dependent generalized Ginzburg-Landau equation.Comment: REVTeX 3.0, 12 pages, 5Postscript figures (uuencoded). Accepted for Phys. Rev.

    The resistive state in a superconducting wire: Bifurcation from the normal state

    Full text link
    We study formally and rigorously the bifurcation to steady and time-periodic states in a model for a thin superconducting wire in the presence of an imposed current. Exploiting the PT-symmetry of the equations at both the linearized and nonlinear levels, and taking advantage of the collision of real eigenvalues leading to complex spectrum, we obtain explicit asymptotic formulas for the stationary solutions, for the amplitude and period of the bifurcating periodic solutions and for the location of their zeros or "phase slip centers" as they are known in the physics literature. In so doing, we construct a center manifold for the flow and give a complete description of the associated finite-dimensional dynamics

    Josephson vortices and solitons inside pancake vortex lattice in layered superconductors

    Full text link
    In very anisotropic layered superconductors a tilted magnetic field generates crossing vortex lattices of pancake and Josephson vortices (JVs). We study the properties of an isolated JV in the lattice of pancake vortices. JV induces deformations in the pancake vortex crystal, which, in turn, substantially modify the JV structure. The phase field of the JV is composed of two types of phase deformations: the regular phase and vortex phase. The phase deformations with smaller stiffness dominate. The contribution from the vortex phase smoothly takes over with increasing magnetic field. We find that the structure of the cores experiences a smooth yet qualitative evolution with decrease of the anisotropy. At large anisotropies pancakes have only small deformations with respect to position of the ideal crystal while at smaller anisotropies the pancake stacks in the central row smoothly transfer between the neighboring lattice positions forming a solitonlike structure. We also find that even at high anisotropies pancake vortices strongly pin JVs and strongly increase their viscous friction.Comment: 22 pages, 11 figures, to appear in Phys. Rev.
    corecore