41 research outputs found

    Comparison of quantum mechanical and classical trajectory calculations of cross sections for ion-atom impact ionization of negative - and positive -ions for heavy ion fusion applications

    Full text link
    Stripping cross sections in nitrogen have been calculated using the classical trajectory approximation and the Born approximation of quantum mechanics for the outer shell electrons of 3.2GeV I−^{-} and Cs+^{+} ions. A large difference in cross section, up to a factor of six, calculated in quantum mechanics and classical mechanics, has been obtained. Because at such high velocities the Born approximation is well validated, the classical trajectory approach fails to correctly predict the stripping cross sections at high energies for electron orbitals with low ionization potential.Comment: submitted to Phys. Rev.

    The Einstein polarization interferometer for cosmology (EPIC) and the millimeter-wave bolometric interferometer (MBI)

    Get PDF
    We provide an overview of a mission concept study underway for the Einstein Inflation Probe (EIP). Our study investigates the advantages and tradeoffs of using an interferometer (EPIC) for the mission. We also report on the status of the millimeter-wave bolometric interferometer (MBI), a ground-based pathfinder optimized for degree-scale CMB polarization measurements at 90 GHz

    Detection of B-mode polarization at degree angular scales by BICEP2

    Get PDF
    We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around ℓ∼80. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor 150 GHz bolometers each with temperature sensitivity of ≈300  μKCMB√s . BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square deg was observed to a depth of 87 nK deg in Stokes Q and U. In this paper we describe the observations, data reduction, maps, simulations, and results. We find an excess of B-mode power over the base lensed-ΛCDM expectation in the range 305σ. Through jackknife tests and simulations based on detailed calibration measurements we show that systematic contamination is much smaller than the observed excess. Cross correlating against WMAP 23 GHz maps we find that Galactic synchrotron makes a negligible contribution to the observed signal. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power ∼(5–10)× smaller than the observed excess signal (with no significant cross-correlation with our maps). However, these models are not sufficiently constrained by external public data to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed with 3σ significance and its spectral index is found to be consistent with that of the CMB, disfavoring dust at 1.7σ. The observed B-mode power spectrum is well fit by a lensed-ΛCDM+tensor theoretical model with tensor-to-scalar ratio r=0.20 +0.07 −0.05, with r=0 disfavored at 7.0σ. Accounting for the contribution of foreground, dust will shift this value downward by an amount which will be better constrained with upcoming data sets

    Atorvastatin induces associated reductions in platelet P-selectin, oxidized low-density lipoprotein, and interleukin-6 in patients with coronary artery diseases.

    Get PDF
    The development and progression of atherosclerosis comprises various processes, such as endothelial dysfunction, chronic inflammation, thrombus formation, and lipid profile modification. Statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors that have pleiotropic effects in addition to cholesterol-lowering properties. However, the mechanisms of these effects are not completely understood. Here, we investigated whether atorvastatin affects the levels of malondialdehyde-modified low-density lipoprotein (MDALDL), an oxidized LDL, the proinflammatory cytokine interleukin-6 (IL-6), or platelet P-selectin, a marker of platelet activation, relative to that of LDL cholesterol (LDL-C). Forty-eight patients with coronary artery disease and hyperlipidemia were separated into two groups that were administered with (atorvastatin group) or without (control group) atorvastatin. The baseline MDA-LDL level in all participants significantly correlated with LDL-C (r = 0.71, P < 0.01) and apolipoprotein B levels (r = 0.66, P < 0.01). Atorvastatin (10 mg/day) significantly reduced the LDL-C level within 4 weeks and persisted for a further 8 weeks of administration. Atorvastatin also reduced the MDA-LDL level within 4 weeks and further reduced it over the next 8 weeks. Platelet P-selectin expression did not change until 4 weeks of administration and then significantly decreased at 12 weeks, whereas the IL-6 level was gradually, but not significantly, reduced at 12 weeks. In contrast, none of these parameters significantly changed in the control group within these time frames. The reduction (%) in IL-6 between 4 and 12 weeks after atorvastatin administration significantly correlated with that of MDALDL and of platelet P-selectin (r = 0.65, P < 0.05 and r = 0.70, P < 0.05, respectively). These results suggested that the positive effects of atorvastatin on the LDL-C oxidation, platelet activation and inflammation that are involved in atherosclerotic processes are exerted in concert after lowering LDL-C

    A global research priority agenda to advance public health responses to fatty liver disease

    Get PDF
    Background & aims An estimated 38% of adults worldwide have non-alcoholic fatty liver disease (NAFLD). From individual impacts to widespread public health and economic consequences, the implications of this disease are profound. This study aimed to develop an aligned, prioritised fatty liver disease research agenda for the global health community. Methods Nine co-chairs drafted initial research priorities, subsequently reviewed by 40 core authors and debated during a three-day in-person meeting. Following a Delphi methodology, over two rounds, a large panel (R1 n = 344, R2 n = 288) reviewed the priorities, via Qualtrics XM, indicating agreement using a four-point Likert-scale and providing written feedback. The core group revised the draft priorities between rounds. In R2, panellists also ranked the priorities within six domains: epidemiology, models of care, treatment and care, education and awareness, patient and community perspectives, and leadership and public health policy. Results The consensus-built fatty liver disease research agenda encompasses 28 priorities. The mean percentage of ‘agree’ responses increased from 78.3 in R1 to 81.1 in R2. Five priorities received unanimous combined agreement (‘agree’ + ‘somewhat agree’); the remaining 23 priorities had >90% combined agreement. While all but one of the priorities exhibited at least a super-majority of agreement (>66.7% ‘agree’), 13 priorities had 90% combined agreement. Conclusions Adopting this multidisciplinary consensus-built research priorities agenda can deliver a step-change in addressing fatty liver disease, mitigating against its individual and societal harms and proactively altering its natural history through prevention, identification, treatment, and care. This agenda should catalyse the global health community’s efforts to advance and accelerate responses to this widespread and fast-growing public health threat. Impact and implications An estimated 38% of adults and 13% of children and adolescents worldwide have fatty liver disease, making it the most prevalent liver disease in history. Despite substantial scientific progress in the past three decades, the burden continues to grow, with an urgent need to advance understanding of how to prevent, manage, and treat the disease. Through a global consensus process, a multidisciplinary group agreed on 28 research priorities covering a broad range of themes, from disease burden, treatment, and health system responses to awareness and policy. The findings have relevance for clinical and non-clinical researchers as well as funders working on fatty liver disease and non-communicable diseases more broadly, setting out a prioritised, ranked research agenda for turning the tide on this fast-growing public health threat

    Personality traits as predictors of sexual attitudes in a sample of Greek University students

    No full text
    Previous studies have shown the relation of dogmatism to political, religious and racial attitudes, but few have explored if this finding can be extended generally to sexual attitudes. This study explored if the findings can be extended to sexual attitudes by examining if religious fundamentalism, political conservatism, years of education, age and geographic immobility could predict (1) sexual attitudes and (2) early sexual experience. The sample (N = 215) consisted of undergraduates from a public university in Greece. Multiple regression analysis was used to predict sexual attitudes (using the Attitude Scale of the Derogatis Sexual Functioning Inventory) and early sexual experience (age of first coital experience). The results suggested that religious fundamentalism and political conservatism were significant predictors of conservative sexual attitudes. Political conservatism was also a significant predictor of earlier sexual experience. The results did not support the assumption that politically conservative students will have a delayed sexual involvement. They suggested that while political conservatives hold more traditional sexual attitudes, they do not necessarily report behaviour that is consistent with these attitudes. © 2012 Taylor & Francis

    Systems Biology Markup Language (SBML) Level 2 Version 5: Structures and Facilities for Model Definitions.

    No full text
    Computational models can help researchers to interpret data, understand biological function, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that can be exchanged between different software systems. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others. By supporting SBML as an input/output format, different tools can all operate on an identical representation of a model, removing opportunities for translation errors and assuring a common starting point for analyses and simulations. This document provides the specification for Version 5 of SBML Level 2. The specification defines the data structures prescribed by SBML as well as their encoding in XML, the eXtensible Markup Language. This specification also defines validation rules that determine the validity of an SBML document, and provides many examples of models in SBML form. Other materials and software are available from the SBML project web site, http://sbml.org
    corecore