21 research outputs found
Antiferromagnetic Domains and Superconductivity in UPt3
We explore the response of an unconventional superconductor to spatially
inhomogeneous antiferromagnetism (SIAFM). Symmetry allows the superconducting
order parameter in the E-representation models for UPt3 to couple directly to
the AFM order parameter. The Ginzburg-Landau equations for coupled
superconductivity and SIAFM are solved numerically for two possible SIAFM
configurations: (I) abutting antiferromagnetic domains of uniform size, and
(II) quenched random disorder of `nanodomains' in a uniform AFM background. We
discuss the contributions to the free energy, specific heat, and order
parameter for these models. Neither model provides a satisfactory account of
experiment, but results from the two models differ significantly. Our results
demonstrate that the response of an E_{2u} superconductor to SIAFM is strongly
dependent on the spatial dependence of AFM order; no conclusion can be drawn
regarding the compatibility of E_{2u} superconductivity with UPt3 that is
independent of assumptions on the spatial dependence of AFMComment: 12 pages, 13 figures, to appear in Phys. Rev.
Recommended from our members
DOMAIN STRUCTURE OF LANTHANUM MODIFIED LEAD TITANATE CERAMICS
X-ray photoelectron spectroscopy of annealed Co-Cr films
Co-Cr thin films have been studied extensively as leading candidates for perpendicular recording media. The enhancement of the magnetic properties (saturation magnetization and coercivity) in rfsputtered Co-Cr films has been reported by several investigators. Concurrent work has revealed similar improvements in the magnetic properties of annealed Co-Cr films produced by magnetron sputtering. Honda et al. propose that compositional inhomogeneities in annealed films give rise to these properties changes. In this work, we have employed X-ray photoelectron spectroscopy (XPS) to investigate compositional changes in annealed Co-Cr layers of thickness 10-200 nm.Films were deposited from a Co-22wt%Cr alloy target onto glass (Coming Type 7059) substrates using a Varian DC Magnetron ("S" gun) sputtering system. Sputtering conditions included an argon pressure of lmTorr and room temperature substrates. The sputtering rate was 0.25 nm/sec. Annealing was performed at 360°C in a vacuum (10-6 Torr) in incremental times up to 49 hours.
</jats:p
Surface Structure - Catalytic Function in Nanophase Gold Catalysts
ABSTRACTCatalysts consisting of ultra-fine gold particles supported on iron oxide have been synthesized by the coprecipitation method. Subsequent to preparation, each sample was heat treated in air at four different temperatures, ranging from 473 K to 773 K. Steady state carbon monoxide oxidation was carried out over each sample. Upon extended reaction, catalyst deactivation took place over three of the catalysts whose respective surface compositions (e.g., gold to iron atomic ratio) were altered appreciably from their initial state. Surface structure analyses performed on all the unreacted catalysts have revealed variations in physical properties (e.g., degree of crystallinity and particle size). In addition, lattice parameters of gold were observed to increase up to 20 % from the bulk value. In contrast, XPS showed both gold and iron to be in essentially the same chemical states for all catalysts, irrespective of heat treatment temperatures. The importance of surface sensitive parameters to catalytic function are discussed.</jats:p
Surface Stabilization Of Inp Using Cds Thin Films
AbstractA chemical bath deposition process was used to grow thin (25–200 Å) films of cadmium sulfide on (100) InP from an aqueous solution of ammonium hydroxide, cadmium sulfate, and thiourea at 75–85 °C. Reflection high energy electron diffraction (RHEED) and transmission electron microscopy (TEM) show that ˜30 Å films are amorphous, while thicker films exhibit a cubic polycrystalline microstructure, with a preferred orientation in the [110] direction. X-ray photoelectron spectroscopy (XPS) shows the CdS treatment both removes the native oxides of InP and forms a stabilizing layer which protects the substrate from re-oxidation. Quasistatic capacitance-voltage response of MIS capacitors on InP, with a CdS layer between the insulator and substrate, exhibits well defined regions of accumulation, depletion, and inversion, indicating a high-quality interface region. An experimental Cmin/Cox, value of 0.28 was obtained, compared to the theoretical value of 0.07. The density of interface states (Dit) was reduced from 1012 to 1011 eV−1cm−2 after CdS treatment when calculated by the high-low method. InP MISFETs fabricated using CdS interlayers showed greatly enhanced device performance over untreated MISFETs.</jats:p
