26 research outputs found

    Theory of a Higher Order Phase Transition: Superconducting Transition in BKBO

    Full text link
    We describe here the properties expected of a higher (with emphasis on the order fourth) order phase transition. The order is identified in the sense first noted by Ehrenfest, namely in terms of the temperature dependence of the ordered state free energy near the phase boundary. We have derived an equation for the phase boundary in terms of the discontinuities in thermodynamic observables, developed a Ginzburg-Landau free energy and studied the thermodynamic and magnetic properties. We also discuss the current status of experiments on Ba0.6K0.4BiO3Ba_{0.6}K_{0.4}BiO_3 and other BiO3BiO_3 based superconductors, the expectations for parameters and examine alternative explanations of the experimental results.Comment: 18 pages, no figure

    Specific heat study of single crystalline Pr0.63_{0.63} Ca0.37_{0.37} MnO3_{3} in presence of a magnetic field

    Get PDF
    We present the results of a study of specific heat on a single crystal of Pr0.63_{0.63}Ca0.37_{0.37}MnO3_3 performed over a temperature range 3K-300K in presence of 0 and 8T magnetic fields. An estimate of the entropy and latent heat in a magnetic field at the first order charge ordering (CO) transition is presented. The total entropy change at the CO transition which is ≈\approx 1.8 J/mol K at 0T, decreases to ∼\sim 1.5 J/mol K in presence of 8T magnetic field. Our measurements enable us to estimate the latent heat LCOL_{CO} ≈\approx 235 J/mol involved in the CO transition. Since the entropy of the ferromagnetic metallic (FMM) state is comparable to that of the charge-ordered insulating (COI) state, a subtle change in entropy stabilises either of these two states. Our low temperature specific heat measurements reveal that the linear term is absent in 0T and surprisingly not seen even in the metallic FMM state.Comment: 8 pages (in RevTEX format), 12 figures (in postscript format) Submitted to Phys. Rev.

    Ordering and Fluctuation of Orbital and Lattice Distortion in Perovskite Manganese Oxides

    Full text link
    Roles of orbital and lattice degrees of freedom in strongly correlated systems are investigated to understand electronic properties of perovskite Mn oxides such as La_{1-x}Sr_{x}MnO_{3}. An extended double-exchange model containing Coulomb interaction, doubly degenerate orbitals and Jahn-Teller coupling is derived under full polarization of spins with two-dimensional anisotropy. Quantum fluctuation effects of Coulomb interaction and orbital degrees of freedom are investigated by using the quantum Monte Carlo method. In undoped states, it is crucial to consider both the Coulomb interaction and the Jahn-Teller coupling in reproducing characteristic hierarchy of energy scales among charge, orbital-lattice and spin degrees of freedom in experiments. Our numerical results quantitatively reproduce the charge gap amplitude as well as the stabilization energy and the amplitude of the cooperative Jahn-Teller distortion in undoped compounds. Upon doping of carriers, in the absence of the Jahn-Teller distortion, critical enhancement of both charge compressibility and orbital correlation length is found with decreasing doping concentration. These are discussed as origins of strong incoherence in charge dynamics. With the Jahn-Teller coupling in the doped region, collapse of the Jahn-Teller distortion and instability to phase separation are obtained and favorably compared with experiments. These provide a possible way to understand the complicated properties of lightly doped manganites.Comment: 22 pages RevTeX including 25 PS figures, submitted to Phys.Rev.B, replaced version; two figures are replaced by Fig.17 with minor changes in the tex

    Specific heat and magnetic order in LaMnO_{3+\delta}

    Full text link
    Magnetic and specific-heat measurements are performed in three different samples of LaMnO_{3+\delta}, with \delta=0.11, 0.15 and 0.26, presenting important disorder effects, such as carrier localization, due to high amounts of La and Mn vacancies. For the samples with \delta =0.11 and 0.15, magnetic measurements show signatures of a two-step transition: as the temperature is lowered, the system enters a ferromagnetic phase followed by a disorder-induced cluster-glass state. Spin-wave-like contributions and an unexpected large linear term are observed in the specific heat as a function of temperature. In the sample with the highest vacancy content, \delta=0.26, the disorder is sufficient to suppress even short-range ferromagnetic order and yield a spin-glass-like state.Comment: RevTeX 2-col, 8 pages, 5 ps figures included, submitted to PR

    The regulation of expanded human nasal chondrocyte re-differentiation capacity by substrate composition and gas plasma surface modification

    Get PDF
    Optimizing re-differentiation of clinically relevant cell sources on biomaterial substrates in serum containing (S+) and serum-free (SF) media is a key consideration in scaffold-based articular cartilage repair strategies. We investigated whether the adhesion and post-expansion re-differentiation of human chondrocytes could be regulated by controlled changes in substrate surface chemistry and composition in S+ and SF media following gas plasma (GP) treatment. Expanded human nasal chondrocytes were plated on gas plasma treated (GP+) or untreated (GP−) poly(ethylene glycol)-terephthalate–poly(butylene terephthalate) (PEGT/PBT) block co-polymer films with two compositions (low or high PEG content). Total cellularity, cell morphology and immunofluorescent staining of vitronectin (VN) and fibronectin (FN) integrin receptors were evaluated, while post-expansion chondrogenic phenotype was assessed by collagen types I and II mRNA expression.\ud \ud We observed a direct relationship between cellularity, cell morphology and re-differentiation potential. Substrates supporting high cell adhesion and a spread morphology (i.e. GP+ and low PEG content films), resulted in a significantly greater number of cells expressing α5β1 FN to αVβ3 VN integrin receptors, concomitant with reduced collagen type II/I mRNA gene expression. Substrates supporting low cell adhesion and a spherical morphology (GP− and high PEG content films) promoted chondrocyte re-differentiation indicated by high collagen type II/I gene expression and a low percentage of α5β1 FN integrin expressing cells.\ud \ud This study demonstrates that cell–substrate interactions via α5β1 FN integrin mediated receptors negatively impacts expanded human nasal chondrocyte re-differentiation capacity. GP treatment promotes cell adhesion in S+ media but reverses the ability of low PEG content PEGT/PBT substrates to maintain chondrocyte phenotype. We suggest alternative cell immobilization techniques to GP are necessary for clinical application in articular cartilage repair
    corecore