33 research outputs found

    The Immune Landscape of Cancer

    Get PDF
    We performed an extensive immunogenomic anal-ysis of more than 10,000 tumors comprising 33diverse cancer types by utilizing data compiled byTCGA. Across cancer types, we identified six im-mune subtypes\u2014wound healing, IFN-gdominant,inflammatory, lymphocyte depleted, immunologi-cally quiet, and TGF-bdominant\u2014characterized bydifferences in macrophage or lymphocyte signa-tures, Th1:Th2 cell ratio, extent of intratumoral het-erogeneity, aneuploidy, extent of neoantigen load,overall cell proliferation, expression of immunomod-ulatory genes, and prognosis. Specific drivermutations correlated with lower (CTNNB1,NRAS,orIDH1) or higher (BRAF,TP53,orCASP8) leukocytelevels across all cancers. Multiple control modalitiesof the intracellular and extracellular networks (tran-scription, microRNAs, copy number, and epigeneticprocesses) were involved in tumor-immune cell inter-actions, both across and within immune subtypes.Our immunogenomics pipeline to characterize theseheterogeneous tumors and the resulting data areintended to serve as a resource for future targetedstudies to further advance the field

    Observations of the Sun at Vacuum-Ultraviolet Wavelengths from Space. Part II: Results and Interpretations

    Full text link

    Micrometastases or isolated tumor cells and the outcome of breast cancer.

    Get PDF
    Contains fulltext : 79596.pdf (publisher's version ) (Open Access)BACKGROUND: The association of isolated tumor cells and micrometastases in regional lymph nodes with the clinical outcome of breast cancer is unclear. METHODS: We identified all patients in The Netherlands who underwent a sentinel-node biopsy for breast cancer before 2006 and had breast cancer with favorable primary-tumor characteristics and isolated tumor cells or micrometastases in the regional lymph nodes. Patients with node-negative disease were randomly selected from the years 2000 and 2001. The primary end point was disease-free survival. RESULTS: We identified 856 patients with node-negative disease who had not received systemic adjuvant therapy (the node-negative, no-adjuvant-therapy cohort), 856 patients with isolated tumor cells or micrometastases who had not received systemic adjuvant therapy (the node-positive, no-adjuvant-therapy cohort), and 995 patients with isolated tumor cells or micrometastases who had received such treatment (the node-positive, adjuvant-therapy cohort). The median follow-up was 5.1 years. The adjusted hazard ratio for disease events among patients with isolated tumor cells who did not receive systemic therapy, as compared with women with node-negative disease, was 1.50 (95% confidence interval [CI], 1.15 to 1.94); among patients with micrometastases, the adjusted hazard ratio was 1.56 (95% CI, 1.15 to 2.13). Among patients with isolated tumor cells or micrometastases, the adjusted hazard ratio was 0.57 (95% CI, 0.45 to 0.73) in the node-positive, adjuvant-therapy cohort, as compared with the node-positive, no-adjuvant-therapy cohort. CONCLUSIONS: Isolated tumor cells or micrometastases in regional lymph nodes were associated with a reduced 5-year rate of disease-free survival among women with favorable early-stage breast cancer who did not receive adjuvant therapy. In patients with isolated tumor cells or micrometastases who received adjuvant therapy, disease-free survival was improved
    corecore