843 research outputs found
Superconductivity Near a Quantum Critical Point in Ba(Fe,Co)2As2
We will examine the possible link between spin fluctuations and the
superconducting mechanism in the iron-based high temperature superconductor
Ba(Fe,Co)2As2 based on NMR and high pressure transport measurements.Comment: Invited paper to m2s-IX (2009
Spin-Orbit Splitting in Non-Relativistic and Relativistic Self-Consistent Models
The splitting of single-particle energies between spin-orbit partners in
nuclei is examined in the framework of different self-consistent approachs,
non-relativistic as well as relativistic. Analytical expressions of spin-orbit
potentials are given for various cases. Proton spin-orbit splittings are
calculated along some isotopic chains (O, Ca, Sn) and they are compared with
existing data. It is found that the isotopic dependence of the relativistic
mean field predictions is similar to that of some Skyrme forces while the
relativistic Hartree-Fock approach leads to a very different dependence due to
the strong non-locality.Comment: 12 pages, RevTeX, 4 new figs.in .zip format, unchanged conclusions,
Phys. ReV.
Physical properties of FeSeTe single crystals grown under different conditions
We report on structural, magnetic, conductivity, and thermodynamic studies of
FeSeTe single crystals grown by self-flux and Bridgman methods.
The samples were prepared from starting materials of different purity at
various temperatures and cooling rates. The lowest values of the susceptibility
in the normal state, the highest transition temperature of 14.5 K, and
the largest heat-capacity anomaly at were obtained for pure (oxygen-free)
samples. The critical current density of A/cm (at 2
K) achieved in pure samples is attributed to intrinsic inhomogeneity due to
disorder at the cation and anion sites. The impure samples show increased
up to A/cm due to additional pinning centers of
FeO. The upper critical field of kOe is estimated
from the resistivity study in magnetic fields parallel to the \emph{c}-axis.
The anisotropy of the upper critical field reaches a value at . Extremely low values of the residual Sommerfeld coefficient for pure
samples indicate a high volume fraction of the superconducting phase (up to
97%). The electronic contribution to the specific heat in the superconducting
state is well described within a single-band BCS model with a temperature
dependent gap K. A broad cusp-like anomaly in the electronic
specific heat of samples with suppressed bulk superconductivity is ascribed to
a splitting of the ground state of the interstitial Fe ions. This
contribution is fully suppressed in the ordered state in samples with bulk
superconductivity.Comment: 11 pages, 11 figures, 3 table
Evolution of a Metal to Insulator Transition in CaNaCuOCl, as seen by ARPES
We present angle resolved photoemission (ARPES) data on Na-doped
CaCuOCl. We demonstrate that the chemical potential shifts upon
doping the system across the insulator to metal transition. The resulting low
energy spectra reveal a gap structure which appears to deviate from the
canonical form. To reconcile the measured
gap structure with d-wave superconductivity one can understand the data in
terms of two gaps, a very small one contributing to the nodal region and a very
large one dominating the anti-nodal region. The latter is a result of the
electronic structure observed in the undoped antiferromagnetic insulator.
Furthermore, the low energy electronic structure of the metallic sample
contains a two component structure in the nodal direction, and a change in
velocity of the dispersion in the nodal direction at roughly 50 meV. We discuss
these results in connection with photoemission data on other cuprate systems.Comment: 10 pages, 12 figures, accepted by PRB; a high quality pdf is
available at
http://helios.physics.utoronto.ca/~fronning/RonningNaCCOCResub.pdf (2.2MB
Observations of Coronal Mass Ejections with the Coronal Multichannel Polarimeter
The Coronal Multichannel Polarimeter (CoMP) measures not only the
polarization of coronal emission, but also the full radiance profiles of
coronal emission lines. For the first time, CoMP observations provide
high-cadence image sequences of the coronal line intensity, Doppler shift and
line width simultaneously in a large field of view. By studying the Doppler
shift and line width we may explore more of the physical processes of CME
initiation and propagation. Here we identify a list of CMEs observed by CoMP
and present the first results of these observations. Our preliminary analysis
shows that CMEs are usually associated with greatly increased Doppler shift and
enhanced line width. These new observations provide not only valuable
information to constrain CME models and probe various processes during the
initial propagation of CMEs in the low corona, but also offer a possible
cost-effective and low-risk means of space weather monitoring.Comment: 6 figures. Will appear in the special issue of Coronal Magnetism,
Sol. Phy
Measurement of event shape distributions and moments in e+e- -> hadrons at 91-209 GeV and a determination of alpha_s
We have studied hadronic events from e+e- annihilation data at centre-of-mass
energies from 91 to 209 GeV. We present distributions of event shape
observables and their moments at each energy and compare with QCD Monte Carlo
models. From the event shape distributions we extract the strong coupling
alpha_s and test its evolution with energy scale. The results are consistent
with the running of alpha_s expected from QCD. Combining all data, the value of
alpha_s(M_Z) is determined to be alpha_s(M_Z) = 0.1191 +- 0.0005 (stat.) +-
0.0010 (expt.) +- 0.0011 (hadr.) +- 0.0044 (theo.). The energy evolution of the
moments is also used to determine a value of alpha_s with slightly larger
errors: alpha_s(M_Z) = 0.1223 +- 0.0005 (stat.) +- 0.0014 (expt.) +- 0.0016
(hadr.) +0.0054 -0.0036 (theo.).Comment: 63 pages 26 fi
Searches for Gauge-Mediated Supersymmetry Breaking Topologies in e+e- collisions at LEP2
In gauge-mediated supersymmetry (SUSY) breaking (GMSB) models the lightest
supersymmetric particle (LSP) is the gravitino and the phenomenology is driven
by the nature of the next-to-lightest SUSY particle (NLSP) which is either the
lightest neutralino, the stau or mass degenerate sleptons. Since the NLSP decay
length is effectively unconstrained, searches for all possible lifetime and
NLSP topologies predicted by GMSB models in e+e- collisions are performed on
the data sample collected by OPAL at centre-of-mass energies up to 209 GeV at
LEP. Results independent of the NLSP lifetime are presented for all relevant
final states including direct NLSP pair-production and, for the first time,
also NLSP production via cascade decays of heavier SUSY particles. None of the
searches shows evidence for SUSY particle production. Cross-section limits are
presented at the 95% confidence level both for direct NLSP production and for
cascade decays, providing the most general, almost model independent results.
These results are then interpreted in the framework of the minimal GMSB (mGMSB)
model, where large areas of the accessible parameter space are excluded. In the
mGMSB model, the NLSP masses are constrained to be larger than 53.5 GeV/c^2,
87.4 GeV/c^2 and 91.9 GeV/c^2 in the neutralino, stau and slepton co-NLSP
scenarios, respectively. A complete scan on the parameters of the mGMSB model
is performed, constraining the universal SUSY mass scale Lambda from the direct
SUSY particle searches: Lambda > 40, 27, 21, 17, 15 TeV/c^2 for messenger
indices N=1, 2, 3, 4, 5 respectively, for all NLSP lifetimes.Comment: 4 pages, 2 figures. To appear in Proceedings of SUSY06, the 14th
International Conference on Supersymmetry and the Unification of Fundamental
Interactions, UC Irvine, California, 12-17 June 200
Flavour Independent hA Search and Two Higgs Doublet Model Interpretation of Neutral Higgs Boson Searches at LEP
Upper limits on the cross-section of the pair-production process e+e- -> h0A0
assuming 100% decays into hadrons, are derived from a new search for the h0A0
-> hadrons topology, independent of the hadronic flavour of the decay products.
Searches for the neutral Higgs bosons h0 and A0, are used to obtain constraints
on the Type II Two Higgs Doublet Model (2HDM(11)) with no CP violation in the
Higgs sector and no additional non Standard Model particles besides the five
Higgs bosons. The analysis combines LEP1 and LEP2 data collected with the OPAL
detctor up to the highest available centre-of-mass energies. The searches are
sensitive to the h0, A0 -> qq, gg,tau+tau- and h0 -> A0A0 decay modes of the
Higgs bosons. The 2HDM(II) parameter space is explored in a detailed scan.
Large regions of the 2HDM(II) parameter space are excluded at the 95% CL in the
(mh, mA), (mh, tanb) and (mA, tanb) planes, using both direct neutral Higgs
boson searches and indirect limits derived from Standard Model high precision
measurements. The region 1 lesssim mh lesssim 55 GeV and 3 lesssim mA lesssim
63 GeV is excluded at 95% CL independently of the choice of the 2HDM(II)
parameters.Comment: 37 pages, 11 figures, Submitted to Eur. Phys. J.
Measurement of the partial widths of the Z into up- and down-type quarks
Using the entire OPAL LEP1 on-peak Z hadronic decay sample, Z -> qbarq gamma
decays were selected by tagging hadronic final states with isolated photon
candidates in the electromagnetic calorimeter. Combining the measured rates of
Z -> qbarq gamma decays with the total rate of hadronic Z decays permits the
simultaneous determination of the widths of the Z into up- and down-type
quarks. The values obtained, with total errors, were Gamma u = 300 ^{+19}_{-18}
MeV and Gamma d = 381 ^{+12}_{-12} MeV. The results are in good agreement with
the Standard Model expectation.Comment: 22 pages, 5 figures, Submitted to Phys. Letts.
- …