152 research outputs found

    Investigations into the transition to sustainable alternative fuels in a South African underground platinum mine

    Get PDF
    DATA AVAILABITY STATEMENT: Data will be made available on request.Adverse environmental impacts associated with the use of fossil fuels and the over-dependence thereon has made energy security and sustainability a critical issue worldwide particularly for key energy intensive economic sectors which are heavily dependent on diesel. We thus investigated the feasibility of a transition to two different alternative fuels namely, rapeseed methyl ester (RME) biodiesel and gas-to-liquid fuel (GTL), in the platinum mining industry in South Africa. Load haul dump vehicles are the most abundant workhorses underground and were the selected vehicles to test alternative fuels at 100% without any engine modification. Potential reduction of harmful unregulated polycyclic aromatic hydrocarbon (PAH) emissions was the focus of the research due to their adverse impacts on the environment, human health and engine operations. Quantitative collection of gas and particle phase PAHs was made possible using portable denuder devices followed by analysis by two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Results showed that total PAH emissions from a high idling vehicle decreased dramatically when diesel was substituted with both biofuels (total gas phase PAH concentrations of 34; 14 and 9 µg m-3 for diesel, GTL and RME, respectively) and no substantial hinderance on engine performance was reported. This novel sector specific study on unmodified heavy duty working vehicles can potentially translate into a real-world, immediate solution, as not only would the selected biofuels be able to directly replace diesel, but both have high potential of being locally produced in South Africa and assist in the promotion of a circular economy.https://www.elsevier.com/locate/refChemistrySDG-07:Affordable and clean energySDG-09: Industry, innovation and infrastructureSDG-12:Responsible consumption and productio

    Monitoring of atmospheric gaseous and particulate polycyclic aromatic hydrocarbons in South African platinum mines utilising portable denuder sampling with analysis by thermal desorption-comprehensive gas chromatography-mass spectrometry

    Get PDF
    Concentrations of diesel particulate matter and polycyclic aromatic hydrocarbons (PAHs) in platinum mine environments are likely to be higher than in ambient air due to the use of diesel machinery in confined environments. Airborne PAHs may be present in gaseous or particle phases each of which has different human health impacts due to their ultimate fate in the body. Here we report on the simultaneous sampling of both phases of airborne PAHs for the first time in underground platinum mines in South Africa, which was made possible by employing small, portable denuder sampling devices consisting of two polydimethylsiloxane (PDMS) multi-channel traps connected in series separated by a quartz fibre filter, which only require small, battery operated portable personal sampling pumps for air sampling. Thermal desorption coupled with comprehensive gas chromatography–mass spectrometry (TD–GC × GC–TofMS) was used to analyse denuder samples taken in three different platinum mines. The samples from a range of underground environments revealed that PAHs were predominantly found in the gas phase with naphthalene and mono-methylated naphthalene derivatives being detected at the highest concentrations ranging from 0.01 to 18 μg m−3. The particle bound PAHs were found in the highest concentrations at the idling load haul dump vehicle exhausts with a dominance of fluoranthene and pyrene. Particle associated PAH concentrations ranged from 0.47 to 260 ng m−3 and included benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene. This work highlights the need to characterise both phases in order to assess occupational exposure to PAHs in this challenging sampling environment.Funding provided by the NRF and SASOL is acknowledged, as is Impala Platinum for granting Genna-Leigh Geldenhuys study leave and funding in order for her to complete her MSc. The Plat Mines are gratefully acknowledged for funding and guided underground sampling visits.http://www.elsevier.com/locate/chromahb2017Chemistr

    Characterization of gaseous and particulate phase polycyclica aromatic hydrocarbons emitted during preharvest burning of sugar cane in different regions of Kwa-Zulu Natal, South Africa

    Get PDF
    DATA AVAILABILITY : All associated data and calculation tools are available in the Supporting Information or directly from the corresponding author ( [email protected])Biomass burning is a significant anthropogenic source of air pollution, including the preharvest burning of sugar cane. These burn events result in atmospheric emissions, including semivolatile organic compounds, that may have adverse impacts on air quality and human health on a local, regional, and even a global scale. Gaseous and particulate polycyclic aromatic hydrocarbon (PAH) emissions from various sugar cane burn events in the province of Kwa-Zulu Natal in South Africa were simultaneously sampled using a portable denuder sampling technology, consisting of a quartz fiber filter sandwiched between two polydimethylsiloxane multichannel traps. Total gas and particle phase PAH concentrations ranged from 0.05 to 9.85 µg m–3 per individual burn event, and nine PAHs were quantified. Over 85% of all PAHs were found to exist in the gas phase, with smaller two- and three-ring PAHs, primarily naphthalene, 1-methyl naphthalene, and acenaphthylene, being the most dominant and causing the majority of variance between the burn sites. The PAH profiles differed between the different burn events at different sites, emphasizing the significant influence that the crop variety, prevailing weather conditions, and geographical location has on the type and number of pollutants emitted. The potential carcinogenicity of the PAH exposure was estimated based on toxic equivalency factors that showed varying risk potentials per burn event, with the highest value of 5.97 ng m–3. Environ Toxicol Chem 2023;42:778–792. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.Impala Platinum Ltd; Bundesministerium für Bildung und Forschung; Helmholtz-Gemeinschaft; University of Pretoria; National Research Foundation.https://setac.onlinelibrary.wiley.com/journal/15528618Chemistr

    A study on the chemical profile and the derived health effects of heavy-duty machinery aerosol with a focus on the impact of alternative fuels

    Get PDF
    DATA AVAILABILITY: The datasets used and/or analyzed during the current study are available from the first author on reasonable request. (Please contact [email protected]).The combustion of petroleum-based fossil fuels is associated with a high environmental burden. Several alternative fuels, including synthetic fuels (e.g., gas-to-liquid, GTL) and biofuels (e.g., rapeseed methyl ester, RME) have been studied in the last few years. While the advantages for the environment (sustainability of biofuels) are well known, research on the resulting health effects from combustion aerosols of these alternative fuels is still scarce. Consequently, we investigated the chemical combustion profile from three distinct fuel types, including a petroleum-based fossil fuel (B0) and two alternative fuels (GTL, RME) under real exposure conditions. We sampled particulate matter (PM2.5, PM0.25) and the gas phase from heavy-duty machinery and evaluated the general pattern of volatile and semi-volatile organic compounds, elemental and organic carbon as well as a range of transition metals in the size segregated PM and/or gas phase. The use of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry enabled us to classify distinct methylated PAHs in the PM samples and its high abundance, especially in the fine fraction of PM. We found that (methylated) PAHs were highly abundant in the PM of B0 compared to GTL and RME. Highest concentrations of targeted aromatic species in the gas phase were released from B0. In summary, we demonstrated that GTL and RME combustion released lower amounts of chemical compounds related to adverse health effects, thus, the substitution of petroleum-based fuels could improve air quality for human and the environment.The University of Pretoria and the National Research Foundation of South Africa. Open Access funding enabled and organized by Projekt DEAL.http://link.springer.com/journal/11869Chemistr

    The Superfluid and Conformal Phase Transitions of Two-Color QCD

    Get PDF
    The phase structure of two-color QCD is examined as a function of the chemical potential and the number of light quark flavors. We consider effective Lagrangians for two-color QCD containing the Goldstone excitations, spin-one particles and negative intrinsic parity terms. We discuss the possibility of a conformal phase transition and the enhancement of the global symmetries as the number of flavors is increased. The effects of a quark chemical potential on the spin-one particles and on the negative intrinsic parity terms are analyzed. It is shown that the phase diagram that is predicted by the linearly realized effective Lagrangian at tree-level matches exactly that predicted by chiral perturbation theory.Comment: ReVTeX, 23 pages, 3 figures. Discussion of vector condensation extended, two figures added, references adde

    Chemical fingerprinting of biomass burning organic aerosols from sugar cane combustion : complementary findings from field and laboratory studies

    Get PDF
    Agricultural fires are a major source of biomass-burning organic aerosols (BBOAs) with impacts on health, the environment, and climate. In this study, globally relevant BBOA emissions from the combustion of sugar cane in both field and laboratory experiments were analyzed using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. The derived chemical fingerprints of fresh emissions were evaluated using targeted and nontargeted evaluation approaches. The open-field sugar cane burning experiments revealed the high chemical complexity of combustion emissions, including compounds derived from the pyrolysis of (hemi)cellulose, lignin, and further biomass, such as pyridine and oxime derivatives, methoxyphenols, and methoxybenzenes, as well as triterpenoids. In comparison, laboratory experiments could only partially model the complexity of real combustion events. Our results showed high variability between the conducted field and laboratory experiments, which we, among others, discuss in terms of differences in combustion conditions, fuel composition, and atmospheric processing. We conclude that both field and laboratory studies have their merits and should be applied complementarily. While field studies under real-world conditions are essential to assess the general impact on air quality, climate, and environment, laboratory studies are better suited to investigate specific emissions of different biomass types under controlled conditions.The EU’s Horizon 2020 research and innovation program through the EUROCHAMP-2020 Infrastructure Activity, the German Federal Ministry of Education and Research (BMBF), the South African National Research Foundation (NRF) via the German/South Africa Research Collaboration Programme and Helmholtz International Laboratory aeroHEALTH.https://pubs.acs.org/journal/aesccqhj2024ChemistrySDG-02:Zero HungerSDG-11:Sustainable cities and communitiesSDG-13:Climate actio

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980�2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14�294 geography�year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61·7 years (95 uncertainty interval 61·4�61·9) in 1980 to 71·8 years (71·5�72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7�17·4), to 62·6 years (56·5�70·2). Total deaths increased by 4·1 (2·6�5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0 (15·8�18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1 (12·6�16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1 (11·9�14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1, 39·1�44·6), malaria (43·1, 34·7�51·8), neonatal preterm birth complications (29·8, 24·8�34·9), and maternal disorders (29·1, 19·3�37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146�000 deaths, 118�000�183�000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393�000 deaths, 228�000�532�000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost YLLs) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Funding Bill & Melinda Gates Foundation. © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY licens

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2•72 (95% uncertainty interval [UI] 2•66–2•79) in 2000 to 2•31 (2•17–2•46) in 2019. Global annual livebirths increased from 134•5 million (131•5–137•8) in 2000 to a peak of 139•6 million (133•0–146•9) in 2016. Global livebirths then declined to 135•3 million (127•2–144•1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2•1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27•1% (95% UI 26•4–27•8) of global livebirths. Global life expectancy at birth increased from 67•2 years (95% UI 66•8–67•6) in 2000 to 73•5 years (72•8–74•3) in 2019. The total number of deaths increased from 50•7 million (49•5–51•9) in 2000 to 56•5 million (53•7–59•2) in 2019. Under-5 deaths declined from 9•6 million (9•1–10•3) in 2000 to 5•0 million (4•3–6•0) in 2019. Global population increased by 25•7%, from 6•2 billion (6•0–6•3) in 2000 to 7•7 billion (7•5–8•0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58•6 years (56•1–60•8) in 2000 to 63•5 years (60•8–66•1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation: Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global burden of 87 risk factors in 204 countries and territories, 1990�2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. Methods: GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk�outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk�outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk�outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. Findings: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95 uncertainty interval UI 9·51�12·1) deaths (19·2% 16·9�21·3 of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12�9·31) deaths (15·4% 14·6�16·2 of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253�350) DALYs (11·6% 10·3�13·1 of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0�9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10�24 years, alcohol use for those aged 25�49 years, and high systolic blood pressure for those aged 50�74 years and 75 years and older. Interpretation: Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
    corecore