190 research outputs found

    Ising spins coupled to a four-dimensional discrete Regge skeleton

    Full text link
    Regge calculus is a powerful method to approximate a continuous manifold by a simplicial lattice, keeping the connectivities of the underlying lattice fixed and taking the edge lengths as degrees of freedom. The discrete Regge model employed in this work limits the choice of the link lengths to a finite number. To get more precise insight into the behavior of the four-dimensional discrete Regge model, we coupled spins to the fluctuating manifolds. We examined the phase transition of the spin system and the associated critical exponents. The results are obtained from finite-size scaling analyses of Monte Carlo simulations. We find consistency with the mean-field theory of the Ising model on a static four-dimensional lattice.Comment: 19 pages, 7 figure

    Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram

    Full text link
    We describe an efficient Monte Carlo algorithm using a random walk in energy space to obtain a very accurate estimate of the density of states for classical statistical models. The density of states is modified at each step when the energy level is visited to produce a flat histogram. By carefully controlling the modification factor, we allow the density of states to converge to the true value very quickly, even for large systems. This algorithm is especially useful for complex systems with a rough landscape since all possible energy levels are visited with the same probability. In this paper, we apply our algorithm to both 1st and 2nd order phase transitions to demonstrate its efficiency and accuracy. We obtained direct simulational estimates for the density of states for two-dimensional ten-state Potts models on lattices up to 200×200200 \times 200 and Ising models on lattices up to 256×256256 \times 256. Applying this approach to a 3D ±J\pm J spin glass model we estimate the internal energy and entropy at zero temperature; and, using a two-dimensional random walk in energy and order-parameter space, we obtain the (rough) canonical distribution and energy landscape in order-parameter space. Preliminary data suggest that the glass transition temperature is about 1.2 and that better estimates can be obtained with more extensive application of the method.Comment: 22 pages (figures included

    Reexamination of the long-range Potts model: a multicanonical approach

    Full text link
    We investigate the critical behavior of the one-dimensional q-state Potts model with long-range (LR) interaction 1/rd+σ1/r^{d+\sigma}, using a multicanonical algorithm. The recursion scheme initially proposed by Berg is improved so as to make it suitable for a large class of LR models with unequally spaced energy levels. The choice of an efficient predictor and a reliable convergence criterion is discussed. We obtain transition temperatures in the first-order regime which are in far better agreement with mean-field predictions than in previous Monte Carlo studies. By relying on the location of spinodal points and resorting to scaling arguments, we determine the threshold value σc(q)\sigma_c(q) separating the first- and second-order regimes to two-digit precision within the range 3≀q≀93 \leq q \leq 9. We offer convincing numerical evidence supporting $\sigma_c(q)Comment: 18 pages, 18 figure

    Low Temperature Static and Dynamic Behavior of the Two-Dimensional Easy-Axis Heisenberg Model

    Full text link
    We apply the self-consistent harmonic approximation (SCHA) to study static and dynamic properties of the two-dimensional classical Heisenberg model with easy-axis anisotropy. The static properties obtained are magnetization and spin wave energy as functions of temperature, and the critical temperature as a function of the easy-axis anisotropy. We also calculate the dynamic correlation functions using the SCHA renormalized spin wave energy. Our analytical results, for both static properties and dynamic correlation functions, are compared to numerical simulation data combining cluster-Monte Carlo algorithms and Spin Dynamics. The comparison allows us to conclude that far below the transition temperature, where the SCHA is valid, spin waves are responsible for all relevant features observed in the numerical simulation data; topological excitations do not seem to contribute appreciably. For temperatures closer to the transition temperature, there are differences between the dynamic correlation functions from SCHA theory and Spin Dynamics; these may be due to the presence of domain walls and solitons.Comment: 12 pages, 14 figure

    Tight-binding study of interface states in semiconductor heterojunctions

    Full text link
    Localized interface states in abrupt semiconductor heterojunctions are studied within a tight-binding model. The intention is to provide a microscopic foundation for the results of similar studies which were based upon the two-band model within the envelope function approximation. In a two-dimensional description, the tight-binding Hamiltonian is constructed such that the Dirac-like bulk spectrum of the two-band model is recovered in the continuum limit. Localized states in heterojunctions are shown to occur under conditions equivalent to those of the two-band model. In particular, shallow interface states are identified in non-inverted junctions with intersecting bulk dispersion curves. As a specific example, the GaSb-AlSb heterojunction is considered. The matching conditions of the envelope function approximation are analyzed within the tight-binding description.Comment: RevTeX, 11 pages, 3 figures, to appear in Phys. Rev.

    Ground-state properties of tubelike flexible polymers

    Full text link
    In this work we investigate structural properties of native states of a simple model for short flexible homopolymers, where the steric influence of monomeric side chains is effectively introduced by a thickness constraint. This geometric constraint is implemented through the concept of the global radius of curvature and affects the conformational topology of ground-state structures. A systematic analysis allows for a thickness-dependent classification of the dominant ground-state topologies. It turns out that helical structures, strands, rings, and coils are natural, intrinsic geometries of such tubelike objects

    Broad histogram relation for the bond number and its applications

    Full text link
    We discuss Monte Carlo methods based on the cluster (graph) representation for spin models. We derive a rigorous broad histogram relation (BHR) for the bond number; a counterpart for the energy was derived by Oliveira previously. A Monte Carlo dynamics based on the number of potential moves for the bond number is proposed. We show the efficiency of the BHR for the bond number in calculating the density of states and other physical quantities.Comment: 7 pages, 7 figure

    Manageable creativity

    Get PDF
    This article notes a perception in mainstream management theory and practice that creativity has shifted from being disruptive or destructive to 'manageable'. This concept of manageable creativity in business is reflected in a similar rhetoric in cultural policy, especially towards the creative industries. The article argues that the idea of 'manageable creativity' can be traced back to a 'heroic' and a 'structural' model of creativity. It is argued that the 'heroic' model of creativity is being subsumed within a 'structural' model which emphasises the systems and infrastructure around individual creativity rather than focusing on raw talent and pure content. Yet this structured approach carries problems of its own, in particular a tendency to overlook the unpredictability of creative processes, people and products. Ironically, it may be that some confusion in our policies towards creativity is inevitable, reflecting the paradoxes and transitions which characterise the creative process

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∌1 m and ∌1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≄500 ÎŒm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 ÎŒm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns

    Scaling and universality in the phase diagram of the 2D Blume-Capel model

    Get PDF
    We review the pertinent features of the phase diagram of the zero-field Blume-Capel model, focusing on the aspects of transition order, finite-size scaling and universality. In particular, we employ a range of Monte Carlo simulation methods to study the 2D spin-1 Blume-Capel model on the square lattice to investigate the behavior in the vicinity of the first-order and second-order regimes of the ferromagnet-paramagnet phase boundary, respectively. To achieve high-precision results, we utilize a combination of (i) a parallel version of the multicanonical algorithm and (ii) a hybrid updating scheme combining Metropolis and generalized Wolff cluster moves. These techniques are combined to study for the first time the correlation length of the model, using its scaling in the regime of second-order transitions to illustrate universality through the observed identity of the limiting value of Ο/L\xi/L with the exactly known result for the Ising universality class.Comment: 16 pages, 7 figures, 1 table, submitted to Eur. Phys. J. Special Topic
    • 

    corecore