5,676 research outputs found

    The dissipation of the system and the atom in two-photon Jaynes-Cummings model with degenerate atomic levels

    Full text link
    The method of perturbative expansion of master equation is employed to study the dissipative properties of system and of atom in the two-photon Jaynes-Cummings model (JCM) with degenerate atomic levels. The numerical results show that the degeneracy of atomic levels prolongs the period of entanglement between the atom and the field. The asymptotic value of atomic linear entropy is apparently increased by the degeneration. The amplitude of local entanglement and disentanglement is suppressed. The better the initial coherence property of the degenerate atom, the larger the coherence loss.Comment: 11 pages, 4 figure

    Emergent spin-glass state in the doped Hund's metal CsFe2As2

    Full text link
    Hund's metal is one kind of correlated metal, in which the electronic correlation is strongly influenced by the Hund's interaction. At high temperatures, while the charge and orbital degrees of freedom are quenched, the spin degrees of freedom can persist in terms of frozen moments. As temperature decreases, a coherent electronic state with characteristic orbital differentiation always emerges at low temperatures through an incoherent-to-coherent crossover, which has been widely observed in iron-based superconductors (e.g., iron selenides and AFe2As2 (A = K, Rb, Cs)). Consequently, the above frozen moments are "screened" by coupling to orbital degrees of freedom, leading to an emergent Fermi-liquid state. In contrast, the coupling among frozen moments should impede the formation of the Fermi-liquid state by competitive magnetic ordering, which is still unexplored in Hund's metal. Here, in the iron-based Hund's metal CsFe2As2, we adopt a chemical substitution at iron sites by Cr/Co atoms to explore the competitive magnetic ordering. By a comprehensive study of resistivity, magnetic susceptibility, specific heat and nuclear magnetic resonance, we demonstrate that the Fermi-liquid state is destroyed in Cr-doped CsFe2As2 by a spinfreezing transition below T_g ~ 22 K. Meanwhile, the evolution of charge degrees of freedom measured by angle-resolved photoemission spectroscopy also supports the competition between the Fermi-liquid state and spin-glass state.Comment: 21 pages, 7 figure

    A Unified Approach to the Classical Statistical Analysis of Small Signals

    Get PDF
    We give a classical confidence belt construction which unifies the treatment of upper confidence limits for null results and two-sided confidence intervals for non-null results. The unified treatment solves a problem (apparently not previously recognized) that the choice of upper limit or two-sided intervals leads to intervals which are not confidence intervals if the choice is based on the data. We apply the construction to two related problems which have recently been a battle-ground between classical and Bayesian statistics: Poisson processes with background, and Gaussian errors with a bounded physical region. In contrast with the usual classical construction for upper limits, our construction avoids unphysical confidence intervals. In contrast with some popular Bayesian intervals, our intervals eliminate conservatism (frequentist coverage greater than the stated confidence) in the Gaussian case and reduce it to a level dictated by discreteness in the Poisson case. We generalize the method in order to apply it to analysis of experiments searching for neutrino oscillations. We show that this technique both gives correct coverage and is powerful, while other classical techniques that have been used by neutrino oscillation search experiments fail one or both of these criteria.Comment: 40 pages, 15 figures. Changes 15-Dec-99 to agree more closely with published version. A few small changes, plus the two substantive changes we made in proof back in 1998: 1) The definition of "sensitivity" in Sec. V(C). It was inconsistent with our actual definition in Sec. VI. 2) "Note added in proof" at end of the Conclusio

    Partial wave analysis of J/psi to p pbar pi0

    Full text link
    Using a sample of 58 million J/ψJ/\psi events collected with the BESII detector at the BEPC, more than 100,000 J/ψppˉπ0J/\psi \to p\bar p \pi^0 events are selected, and a detailed partial wave analysis is performed. The branching fraction is determined to be Br(J/ψppˉπ0)=(1.33±0.02±0.11)×103Br(J/\psi \to p \bar p \pi^0)=(1.33 \pm 0.02 \pm 0.11) \times 10^{-3}. A long-sought `missing' NN^*, first observed in J/ψpnˉπJ/\psi \to p \bar n \pi^-, is observed in this decay too, with mass and width of 20404+3±252040_{-4}^{+3}\pm 25 MeV/c2^2 and 2308+8±52230_{-8}^{+8}\pm 52 MeV/c2^2, respectively. Its spin-parity favors 3/2+{3/2}^+. The masses, widths, and spin-parities of other NN^* states are obtained as well.Comment: Add one author nam

    City-level water withdrawal and scarcity accounts of China

    Get PDF
    In the context of China’s freshwater crisis high-resolution data are critical for sustainable water management and economic growth. Yet there is a dearth of data on water withdrawal and scarcity regardless of whether total or subsector amount, for prefectural cities. In administrative and territorial scope, we accounted for water withdrawal of all 63 economic-socio-environmental sectors for all 343 prefectural cities in China, based on a general framework and 2015 data. Spatial and economic-sector resolution is improved compared with previous studies by partitioning general sectors into industrial and agricultural sub-sectors. Construction of these datasets was based on selection of 16 driving forces. We connected a size indicator with corresponding water-withdrawal efficiency. We further accounted for total blue-water withdrawal and quantitative water scarcity status. Then we compared different scopes and methods of official accounts and statistics from various water datasets. These disaggregated and complete data could be used in input-output models for municipal design and governmental planning to help gain in-depth insights into subsector water-saving priorities from local economic activities

    Parallel momentum distribution of the 28^{28}Si fragments from 29^{29}P

    Full text link
    Distribution of the parallel momentum of 28^{28}Si fragments from the breakup of 30.7 MeV/nucleon 29^{29}P has been measured on C targets. The distribution has the FWHM with the value of 110.5 ±\pm 23.5 MeV/c which is consistent quantitatively with Galuber model calculation assuming by a valence proton in 29^{29}P. The density distribution is also predicted by Skyrme-Hartree-Fock calculation. Results show that there might exist the proton-skin structure in 29^{29}P.Comment: 4 pages, 4 figure
    corecore