25,579 research outputs found

    The Cauchy Operator for Basic Hypergeometric Series

    Get PDF
    We introduce the Cauchy augmentation operator for basic hypergeometric series. Heine's 2Ï•1{}_2\phi_1 transformation formula and Sears' 3Ï•2{}_3\phi_2 transformation formula can be easily obtained by the symmetric property of some parameters in operator identities. The Cauchy operator involves two parameters, and it can be considered as a generalization of the operator T(bDq)T(bD_q). Using this operator, we obtain extensions of the Askey-Wilson integral, the Askey-Roy integral, Sears' two-term summation formula, as well as the qq-analogues of Barnes' lemmas. Finally, we find that the Cauchy operator is also suitable for the study of the bivariate Rogers-Szeg\"o polynomials, or the continuous big qq-Hermite polynomials.Comment: 21 pages, to appear in Advances in Applied Mathematic

    Effective generation of Ising interaction and cluster states in coupled microcavities

    Full text link
    We propose a scheme for realizing the Ising spin-spin interaction and atomic cluster states utilizing trapped atoms in coupled microcavities. It is shown that the atoms can interact with each other via the exchange of virtual photons of the cavities. Through suitably tuning the parameters, an effective Ising spin-spin interaction can be generated in this optical system, which is used to produce the cluster states. This scheme does not need the preparation of initial states of atoms and cavity modes, and is insensitive to cavity decay.Comment: 11pages, 2 figures, Revtex

    Efficient electronic entanglement concentration assisted with single mobile electron

    Full text link
    We present an efficient entanglement concentration protocol (ECP) for mobile electrons with charge detection. This protocol is quite different from other ECPs for one can obtain a maximally entangled pair from a pair of less-entangled state and a single mobile electron with a certain probability. With the help of charge detection, it can be repeated to reach a higher success probability. It also does not need to know the coefficient of the original less-entangled states. All these advantages may make this protocol useful in current distributed quantum information processing.Comment: 6pages, 3figure

    In silico study of different thrombolytic agents for fibrinolysis in acute ischemic stroke

    Get PDF
    Alteplase is the only FDA-approved drug for thrombolysis in acute ischemic stroke (AIS). Meanwhile, several thrombolytic drugs are deemed to be promising candidates to substitute alteplase. This paper evaluates the efficacy and safety of urokinase, ateplase, tenecteplase, and reteplase for intravenous AIS therapy by computational simulations of the pharmacokinetics and pharmacodynamics combined with a local fibrinolysis model. The performances of the drugs are evaluated by comparing clot lysis time, plasminogen activator inhibitor (PAI) inhibition resistance, intracranial hemorrhage (ICH) risk, and activation time from drug administration to clot lysis. Our results reveal that urokinase has the quickest lysis completion but the highest ICH risk due to excess fibrinogen depletion in systemic plasma. While tenecteplase and alteplase have very similar thrombolysis efficacy, tenecteplase has a lower risk of ICH and better resistance to PAI-1. Among the four simulated drugs, reteplase has the slowest fibrinolysis rate, but fibrinogen concentration in systemic plasma is unaffected during thrombolysis

    On Mitigation of Side-Channel Attacks in 3D ICs: Decorrelating Thermal Patterns from Power and Activity

    Full text link
    Various side-channel attacks (SCAs) on ICs have been successfully demonstrated and also mitigated to some degree. In the context of 3D ICs, however, prior art has mainly focused on efficient implementations of classical SCA countermeasures. That is, SCAs tailored for up-and-coming 3D ICs have been overlooked so far. In this paper, we conduct such a novel study and focus on one of the most accessible and critical side channels: thermal leakage of activity and power patterns. We address the thermal leakage in 3D ICs early on during floorplanning, along with tailored extensions for power and thermal management. Our key idea is to carefully exploit the specifics of material and structural properties in 3D ICs, thereby decorrelating the thermal behaviour from underlying power and activity patterns. Most importantly, we discuss powerful SCAs and demonstrate how our open-source tool helps to mitigate them.Comment: Published in Proc. Design Automation Conference, 201

    Phase diagram and symmetry breaking of SU(4) spin-orbital chain in a generalized external field

    Full text link
    The ground state phases of a one-dimensional SU(4) spin-orbital Hamiltonian in a generalized external field are studied on the basis of Bethe-ansatz solution. Introducing three Land\'e gg factors for spin, orbital and their products in the SU(4) Zeeman term, we discuss systematically the various symmetry breaking. The magnetization versus external field are obtained by solving Bethe-ansatz equations numerically. The phase diagrams corresponding to distinct residual symmetries are given by means of both numerical and analytical methods.Comment: Revtex4, 16 pages, 7 figure
    • …
    corecore