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Abstract: Alteplase is the only FDA-approved drug for thrombolysis in acute ischemic stroke (AIS).
Meanwhile, several thrombolytic drugs are deemed to be promising candidates to substitute alteplase.
This paper evaluates the efficacy and safety of urokinase, ateplase, tenecteplase, and reteplase for
intravenous AIS therapy by computational simulations of the pharmacokinetics and pharmacody-
namics combined with a local fibrinolysis model. The performances of the drugs are evaluated by
comparing clot lysis time, plasminogen activator inhibitor (PAI) inhibition resistance, intracranial
hemorrhage (ICH) risk, and activation time from drug administration to clot lysis. Our results reveal
that urokinase has the quickest lysis completion but the highest ICH risk due to excess fibrinogen
depletion in systemic plasma. While tenecteplase and alteplase have very similar thrombolysis effi-
cacy, tenecteplase has a lower risk of ICH and better resistance to PAI-1. Among the four simulated
drugs, reteplase has the slowest fibrinolysis rate, but fibrinogen concentration in systemic plasma is
unaffected during thrombolysis.

Keywords: thrombolysis; acute ischemic stroke; tissue plasminogen activator; tenecteplase; reteplase;
alteplase; urokinase; pharmacokinetics; pharmacodynamics

1. Introduction

Thrombus is the final product of the hemostasis process to repair damaged blood
vessels. It is made of platelets, cellular components, and fibrin fiber [1]. Unregulated
thrombus formation can result in the blockage of blood circulation and thus cause serious
diseases, such as ischemic stroke, myocardial infarction, and pulmonary embolism [2]. One
of the well-established treatments for these diseases is thrombolytic therapy. Thrombolytics
are a group of medications which can lyse the intravascular thrombus and restore blood flow
by catalyzation of the serine protease plasminogen to plasmin that dissolves the crosslinking
fibrin in the clot. The detailed thrombolysis mechanism is shown in Figure 1a. The
first generation of thrombolytic drugs, streptokinase and urokinase, are fibrin-unspecific
agents [3]. They quickly bind with plasminogen in the plasma and the clot. This may
result in excess depletion of plasminogen and a high risk of intracranial hemorrhage (ICH)
during stroke treatment [2]. The second-generation agents, such as tissue plasminogen
activator (tPA) and its variants, are fibrin-specific [3]. These serine proteases form a
ternary complex with plasminogen on the fibrin surface before cleaving the plasminogen to
plasmin. They have a low affinity to the substrate of plasminogen in the absence of fibrin.
Theoretically, localized fibrinolysis can reduce the systematic effect and the associated
internal hemorrhage risk [2].
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Figure 1. Overview of the 1D thrombolytic model. (a) Two-compartment PK-PD model. (b) Sche-
matic of local PD model which couples 1D blood flow (in x-direction) with species transport and 
fibrinolytic reactions. The model solves clot lysis in an occluded artery where the red area indicates 
the clot with a porosity of 𝜀  and the open area is clot-free with 𝜀 = 1. (c) Fibrinolysis mechanism 
on fibrin. 

Compared with other arterial ischemic diseases, the application of thrombolytic 
drugs in ischemic stroke treatment faces more challenges. Early clinical studies of tradi-
tional streptokinase and urokinase intravenous (IV) therapies for acute ischemic stroke 
(AIS) patients show high mortality rates and insignificant improvement in recanalization 
rates when compared with control groups [4–7]. At present, alteplase is the only approved 
thrombolytic drug for standard-of-care AIS treatment authorized by the U.S. Food and 
Drug Administration (FDA) [8]. It is a recombinant tPA that has high fibrin specificity in 
theory. The milestone clinical trial from the National Institute of Neurological Disorders 
and Stroke (NINDS) group was the first to show significantly improved functional out-
comes after 90 days of intravenous tPA therapy in stroke patients. However, subsequent 
clinical studies and meta-analysis indicate that the benefit of alteplase is undermined by 
plasminogen activator inhibitor-1 (PAI-1), a short half-life, and increasing probability of 
ICH. 

Genetically engineered tPA variants, such as reteplase and tenecteplase, are promis-
ing drugs aiming to increase fibrin affinity and extend half-life [9–13]. Nevertheless, none 
of these tPA variants has shown better functional clinical outcomes than alteplase for AIS 
treatment so far [11,14]. Recent clinical research from developing countries found that IV 
urokinase and its precursor, pro-urokinase, seem to have similar efficacy and safety to 
alteplase in treating mild to moderate AIS, while the cost of urokinase is only one-tenth 
of that of alteplase [15–20]. These contested clinical results did not fully reflect the theo-
retical advantage of drugs as scientists expected. Therefore, there is a need to systemati-
cally compare the efficacy and safety of drugs based on their unique mechanism of action 

Figure 1. Overview of the 1D thrombolytic model. (a) Two-compartment PK-PD model. (b) Schematic
of local PD model which couples 1D blood flow (in x-direction) with species transport and fibrinolytic
reactions. The model solves clot lysis in an occluded artery where the red area indicates the clot with
a porosity of εclot and the open area is clot-free with ε = 1. (c) Fibrinolysis mechanism on fibrin.

Compared with other arterial ischemic diseases, the application of thrombolytic drugs
in ischemic stroke treatment faces more challenges. Early clinical studies of traditional
streptokinase and urokinase intravenous (IV) therapies for acute ischemic stroke (AIS)
patients show high mortality rates and insignificant improvement in recanalization rates
when compared with control groups [4–7]. At present, alteplase is the only approved
thrombolytic drug for standard-of-care AIS treatment authorized by the U.S. Food and Drug
Administration (FDA) [8]. It is a recombinant tPA that has high fibrin specificity in theory.
The milestone clinical trial from the National Institute of Neurological Disorders and Stroke
(NINDS) group was the first to show significantly improved functional outcomes after
90 days of intravenous tPA therapy in stroke patients. However, subsequent clinical studies
and meta-analysis indicate that the benefit of alteplase is undermined by plasminogen
activator inhibitor-1 (PAI-1), a short half-life, and increasing probability of ICH.

Genetically engineered tPA variants, such as reteplase and tenecteplase, are promising
drugs aiming to increase fibrin affinity and extend half-life [9–13]. Nevertheless, none of
these tPA variants has shown better functional clinical outcomes than alteplase for AIS
treatment so far [11,14]. Recent clinical research from developing countries found that IV
urokinase and its precursor, pro-urokinase, seem to have similar efficacy and safety to
alteplase in treating mild to moderate AIS, while the cost of urokinase is only one-tenth of
that of alteplase [15–20]. These contested clinical results did not fully reflect the theoretical
advantage of drugs as scientists expected. Therefore, there is a need to systematically
compare the efficacy and safety of drugs based on their unique mechanism of action and
drug transport processes. This requires a deep understanding of the pharmacokinetics and
pharmacodynamics (PK-PD) of these drugs.
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Thrombolysis is a complex process. The efficacy of drugs depends on the mechanism of
action, reaction kinetics, blood flow, body exposure to the drugs, and individual differences.
A mathematical model combining systemic PK-PD models (reaction kinetics in plasma)
with the local clot lysis process can be useful in such a situation. To the best of our
knowledge, there is no published study comparing the efficacy of thrombolytic drugs via
in silico modeling. So far, the most detailed computational thrombolysis model is the 3D
patient-specific model developed by Piebalgs et al. [21], which was further extended by Gu
et al. who also developed a reduced-order model for better computational efficiency [22].

In the present study, the 1D two-compartment PK-PD model of Gu et al. [22] was
adopted and modified to simulate intravenous thrombolysis of four known thrombolytic
drugs, alteplase, urokinase, tenecteplase, and reteplase, in a simplified model of the middle
cerebral artery with an occluding clot. Temporal evolutions of lysis proteases in plasma and
the clot were analyzed. The performances of the drugs were evaluated by comparing clot
lysis time, PAI-1 inhibition resistance, ICH risk, and activation time from administration
to clot lysis. These parameters were chosen because clot lysis time is directly related to
the efficacy of thrombolytic drugs, while PAI-1 inhibition resistance determines the real
amount of drugs in the body that can be effective for clot lysis. ICH risk was assessed by
monitoring plasma FBG concentration. Activation time indicates the time needed for each
drug to start the clot lysis.

2. Materials and Methods
2.1. Drug Properties, Dose Regimen, and Reaction Kinetics

Compared with alteplase, tenecteplase has high fibrin affinity, and a longer plasma
half-life. Tenecteplase also has a high resistance to PAI-1. The suggested dose regimen for
AIS is a quick one-bolus IV infusion (0.25 mg/kg) within 5 s [11].

Reteplase demonstrates weaker binding with fibrin than native tPA does and conse-
quently allows more free diffusion through the clot. It also has a low affinity to plasminogen
but a longer half-life. Clinical research on IV reteplase therapy for AIS is very limited;
hence, the recommended dose regimen for acute myocardial infarction was chosen for
simulation and comparison. This includes a double bolus of 10U (17.4 mg) each over 2 min
with an interval of 30 min [12].

Urokinase (uPA) directly cleaves plasminogen to plasmin. It has no affinity or speci-
ficity to fibrin. It can be rapidly inhibited by plasminogen activator inhibitors. The dose
regimen reported in a recent clinical study is 1–1,500,000 U or 14,300–20,000 U/kg. Here,
we chose 1,500,000 U (about 11.3 mg) IV infusion over 30 min [20,23].

Alteplase has high affinity to fibrin and plasminogen but a short half-life of only about
5 min. The standard dose is 0.9 mg/kg, with 10% of the total being administered as initial
IV bolus in 1 min, and the remaining 90% infused over 60 min [24].

For different plasminogen activators, the reactions between plasminogen, plasmin,
and activators in the plasma phase are described by the Michaelis–Menten kinetics:

tPA/uPA + PLG
KM,PLG & kcat,PLG−−−−−−−−−−−−−→ tPA + PLS, rtPA−PLG =

kcat,PLGCtPA/uPA CPLG

KM,PLG + CPLG
(1)

where CtPA/uPA, CPLG is the concentration of plasminogen activators and plasminogen in the
plasma phase, and KM and kcat are the Michaelis constant and catalytical constant. Values for
theses parameters were obtained from in vitro experiments in the literature [12,23–27].

The inhibition effect of PAI-1 is described by:

tPA/uPA + PAI
kPAI−−−−−→ inactive, rPAI = kPAICtPACPAI (2)

where kPAI is the second-order reaction constant for reaction between PAI-1 and tPA/uPA.
The PK parameters kcp, kpc, and kel were obtained from clinical data in the published
literature. Kinetic parameters involved in the above reactions are summarized in Table 1.
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The clot-phase reaction kinetics are associated with the fibrin (F) affinity and tPA/uPA
catalyzation of plasminogen. The reactions are described by the Michaelis–Menten equation.

For tPA:

tPA + F
ka,tPAkd,tPA

� tPA− F, rtPA−F = ka,tPACtPAn f ree − kd,tPAntPA (3)

tPA− F + PLG− F
KM & kM,cat−−−−−−−−−−→ tPA− F + PLS− F, rPLS,MM =

kcatnPLGntPA

KM(1− εclot) + nPLG
(4)

Note that uPA has no affinity with fibrin. Therefore, we assumed that unbound uPA
reacts directly with plasminogen on fibrin:

uPA + PLG·F KM ,kcat−−−−→ uPA + PLS·F, rpls,MM =
kcat nPLGCuPA

KM(1− εclot) + nPLG
(5)

where KM and kcat are the Michaelis constant and catalytical constant. Kd is the dissociation
constant between fibrin and plasminogen activators, which is the ratio of desorption
constant kd to adsorption constant ka. n f ree is the free binding site. ni is the concentration
of bound species. εclot is the porosity of the clot. Values for the kinetic parameters for the
four simulated drugs are given in Table 2.

Table 1. Parameters for the simulated drugs in plasma-phase reactions.

Alteplase [19] Urokinase (uPA) Tenecteplase (TNK-tPA) Reteplase

Initial concentration C0 0.05 nM 0.7 nM [25] 0 nM 0 nM
KM 28 µM 50 µM [26] 20 µM [27] 0.2 µM [28]

k1,cat 0.3 s−1 1 s−1 [26] 0.04 s−1 [27] 3.3 × 10−4 s−1 [28]
k5 37 µM−1s−1 160 µM−1 [29] 0.15 µM−1s−1 [30] 37 µM−1 s−1 [28]
kel 2.27 × 10−3s−1 4.06 × 10−4s−1 [31] 3.89 × 10−4s−1 [32] 8.33 × 10−4s−1 [33]
kcp 3.1 × 10−4s−1 4.39 × 10−4s−1 [31] 1.1 × 10−4s−1 [32] 18.2 × 10−5s−1 [33]
kpc 3.34 × 10−4s−1 1.28 × 10−4s−1 [31] 1.37 × 10−4s−1 [32] 1.53 × 10−4s−1 [33]

Vc per body weight 0.057 L/kg 0.13 L/kg [31] 0.0496 L/kg [34] 0.25 L/kg [33]

Table 2. Kinetic parameters for the simulated drugs in clot-phase reactions.

Alteplase Tenecteplase Reteplase Urokinase

ka 0.01 µM−1s−1 [18] 0.01 µM−1s−1 0.01 µM−1s−1 0
Dissociation
constant kd

0.58 µM 0.15 µM [34] 1.1 µM [35] 0

kd,tPA 0.0058 s−1 0.0015 s−1 [34] 0.011 s−1 [35] 0
KM 0.16 2.8 [27] 4.6 [28] 0.81 µM [36]

kM,cat 0.3 0.54 [27] 0.32 [28] 2.6 s−1 [36]

2.2. Mathematical Model

The mathematical modeling platform developed by Gu et al. [22] was adopted in this
study. As shown in Figure 1, this model comprises two sub-models: a systemic PK-PD
model and a local PD model. The PK-PD model describes reactions between lysis proteins
in systemic plasma, while the local PD model describes the transport of lysis proteins and
the associated fibrinolytic reactions in the artery where the clot is located. The temporal
concentration profile of the active species calculated from the PK-PD model provides the
inlet boundary condition for the local PD model. In the systemic PK-PD model, the mass
balance equation for a thrombolytic drug is written as follows:

dCc

dt
=

I
Vc Mw,PA

− kel,DCc − kcpCc + kpcCp + SPA + Rplasma
d (6)
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where Vc is the distribution volume of central compartment when the patient is assumed to
have a body weight of 80 kg, Mw,PA is the molecular weight of plasminogen activators, kel,D
is the elimination constant, Cc is the concentration in the central compartment, and kcp and
kpc are the distribution constants for the central compartment and peripheral compartment,
respectively. SPA is the secretion of plasminogen activators, which should be zero for
tPA mutants:

STenecteplase/Reteplase = 0 (7)

Temporal concentration change of other fibrinolytic proteins in the systematic model
(Ci,sys) is calculated as follows:

dCi,sys

dt
= −keli Ci,sys + Rplsma

i + Si , i = PLG, PLS, AP, FBG. MG and PAI (8)

where keli is the elimination constant, and Si is the systematic secretion of other proteins, i.
RPlasma

i represents the fibrinolysis reactions in plasma.
The temporal concentration change of drugs in the peripheral compartment (Cp) is

calculated as:
dCp

dt
= kcpCc − kpcCp (9)

The fibrinolysis reaction mechanism is shown in Figure 1. Six fibrinolysis proteins
are involved in the reactions, including plasminogen (PLG), plasmin (PLS), plasminogen
activator inhibitior-1 (PAI-1), α2-antiplasmin (AP), and α2-macroglobulin (MG).

As shown in Figure 1b, the local PD model treats the clot as a porous medium that has
a length of Lclot along the direction of flow. Transport of species in the clot is governed by
the convection–diffusion–reaction equation in the x-direction:

∂εni
∂t

= −∂εUni
∂x

+ Di
∂2εUni

∂x2 + εRtotal
i , Rtotal

i = Rplasma
i + Rclot

i (10)

where Rclot
i is the clot-phase reaction rate, Rplasma

i is the plasma-phase reaction rate, and
Rtotal

i is the total reaction rate. Di is the drug diffusivity in the clot, and ε is the porosity of
the clot. U is the flow velocity in the clot, which is calculated from Darcy’s law:

U =
k
µ

∆p (11)

where k is the permeability of the clot in unit m2. It is calculated from the Davis equation,
and further details can be found in Piebalgs et al. [18]. µ is the dynamic visocity in unit
Pa·S, and ·p is the pressure drop per unit length of the clot. The degradation of binding
sites by PLS is calculated as:

∂ntotal
∂t

= −kdegγnPLS (12)

where kdeg is the lysis coefficient, and γ is the number of cuts to degrade one fibrin unit. De-
tailed information about the model and numerical procedure can be found in Gu et al. [22].

2.3. Additional Kinetic Parameters and Model Validation

Apart from the parameters mentioned above, kinetic parameters for reactions between
the plasmin, antiplasmin, macroglobulin, and fibrinogen can be found in our previous
study [22]. Results from the systemic PK model of urokinase, tenecteplase, and reteplase
were compared with clinical data available in the literature [31,37,38], while validation for
the PK model of alteplase can be found in our previous study [21,22]. We chose to compare
the systemic concentrations of fibrinogen, plasminogen, and plasminogen activators for
model validation due to the accessibility of data. Detailed comparisons can be found in
Appendix A.
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3. Results
3.1. Comparison of Therapeutic Efficacy

Figure 2 summarizes the dose regimen of each drug, while Figures 3 and 4 illustrate
the concentration of four drugs in the central compartment and local PD model, respectively.
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It can be seen that the large bolus amount (20 mg), combined with the slow clearance
of tenecteplase, provides the greatest drug exposure (area under the curve in Figure 3)
among the four drugs. Compared to alteplase, tenecteplase has a similar lysis time and
concentration profile at the clot front, suggesting comparable therapeutic efficacy between
the two drugs (Figure 4). At the same time, it is worth noting that the total dose of
tenecteplase (0.25 mg/kg) is significantly lower than that of alteplase (0.9 mg/kg), which
indicates the high effectiveness of tenecteplase over alteplase. Urokinase has the shortest
lysis time, while the total drug exposure is less than that of alteplase. The dose amount of
urokinase is also the lowest among the four simulated drugs. These properties indicate its
high therapeutic efficacy for thrombolysis. In contrast, the large dose of reteplase is quickly
eliminated from the body (Figure 3). Its peak concentration and total body exposure are the
lowest among the four drugs, resulting in a low spatial and temporal drug concentration in
the clot, especially after 60 min. The sluggish reaction kinetics further reduce the lysis rate.

3.2. ICH Risk

Since low fibrinogen (FBG) concentrations can increase the ICH risk, comparisons of
FBG concentration were made for the four simulated drugs, as shown in Figures 5 and 6
for FBG concentrations in the systemic PK-PD model and local PD model, respectively. It
can be clearly seen that urokinase causes a rapid depletion and the lowest level of FBG
concentration in systemic plasma (Figure 5), but local FBG concentration within the clot
only falls slightly during urokinase therapy (Figure 6d). Tenecteplase therapy can maintain
higher levels of FBG concentration than alteplase, whereas the FBG concentration after
reteplase therapy is almost unchanged in both the plasma and clot, which is due to its low
affinity to fibrin and sluggish reaction kinetics.
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3.3. Activation Time and Extent of Lysis

Concentration maps of the binding site in the clot are shown in Figure 7 where the
time that the clot starts to dissolve (the time from yellow to blue at 5 mm along the length)
can be found. Both alteplase and tenecteplase have short activation times, while reteplase
and urokinase take much longer time to activate clot lysis. This is associated with the
free-phase concentration, fibrin affinity, and reaction activity of the drug. After lysis is
activated at the clot front, tenecteplase and alteplase dissolve binding sites rapidly within
2 min. In comparison, it takes 10 min for urokinase and over 60 min for reteplase, which
can be explained by slow plasminogen activation and low local concentration at the clot.
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Figure 7. Temporal and spatial concentration profiles of binding sites for (a) alteplase, (b) tenecteplase,
(c) reteplase, and (d) urokinase in the clot. Activation time to start lysis: tenecteplase (12 min)≈ alteplase
(12 min) < urokinase (16 min) < reteplase (18 min).

3.4. PAI-1 Inhibition Effect

Figures 8 and 9 compare the variation in PAI-1 concentration over time after drug
administration. A higher concentration of PAI-1 indicates a better resistance to PAI-1
inhibition. The results show clearly that the highest systematic concentration of PAI-1
is maintained with tenecteplase therapy where the initial fall in PAI-1 is less dramatic
compared to the other drugs, and it recovers to a high level, indicating that tenecteplase
has high resistance to PAI-1. For alteplase and reteplase, the systematic PAI-1 concentration
drops dramatically to about 10−7 µM after 1 min of drug administration. Urokinase
causes the lowest plasma PAI-1 concentration. In Figure 9, the temporal and spatial PAI-1
concentration profiles in the clot are similar for alteplase, reteplase, and urokinase, where
PAI-1 is quickly depleted to about 1× 10−6 µM in a few minutes after reacting with the drug.
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For tenecteplase, the depletion of PAI-1 is much slower, and the concentration of PAI-1 is about
5× 105 µM when the clot is lysed completely. The performance of the four drugs in PAI-1
inhibition resistance is ranked as follows: urokinase < alteplase ≈ reteplase < tenecteplase.
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4. Discussion

In this study, we simulated the thrombolysis process of four thrombolytic drugs in
an idealized, fully occluded middle cerebral artery. The spatial and temporal variations
of fibrinolytic proteins can be used to assess the efficacy and ICH risk of each therapy.
Qualitative comparisons were made between our simulation results and relevant findings
reported in the literature. In recent years, several studies reported comparable treatment
outcomes between alteplase and urokinase [17,20,23]. In vitro experiments show that the
clot lysis rate of urokinase is higher than that of alteplase [39]. Our simulation results show
that urokinase has the shortest lysis time (about 26 min) among the four drugs, but the
total systemic body exposure is less than that of alteplase. The high concentration, low
clearance, and fast reaction kinetics of urokinase with PLG provide a good therapeutic
efficacy and short time to start lysis. The well-known complication of high bleeding risk
is also revealed in our simulation via low FBG concentration in the urokinase therapy. Its
non-specific catalyzation of PLG decreases the systemic FBG concentration rapidly in the



Pharmaceutics 2023, 15, 797 10 of 14

central compartment (Figure 5), which indicates a higher risk of ICH. Urokinase can also
be quickly inhibited by PAI-1, which is demonstrated by the lowest PAI concentration in
systemic plasma and within the clot among the four drugs (Figures 8 and 9d).

Tenecteplase (TNK-tPA) is a mutation of alteplase with the substitution of T103N
(introducing glycosylation site), N117Q (deleting glycosylation site), and Lys296-His297-
Arg298-Arg299 with four alanines [10]. It has a longer plasma half-life and 15-fold higher
fibrin specificity than alteplase [11]. It also has less impairment of hemostasis and greater
resistance to PAI-1. Tenecteplase has been recommended as an alternative to alteplase
in the US due to its low ICH risk and simple single-bolus administration [40]. Some
studies have shown that tenecteplase may outperform alteplase or urokinase in terms of
treatment outcome or recanalization rate [41,42]. Using our simulation model, the highest
initial dose of tenecteplase, combined with the slowest drug clearance among the four
drugs, gives rise to the highest plasma concentration in the body. Compared to alteplase,
tenecteplase has a very similar clot lysis and activation time, but a much lower ICH risk (higher
systematic concentration and free-phase concentration of FBG in Figures 5 and 6b). Moreover,
Figure 8 reveals that tenecteplase also has an excellent resistance to PAI-1 inhibition. These
properties indicate that tenecteplase might be a promising candidate for AIS treatment.

Reteplase is a modified version of tPA with a longer half-life due to the absence of
epidermal growth factor and fibronectin finger domains. However, it has a low affinity
to fibrin because of the deletion of the fibronectin finger region. An in vitro experiment
shows that reteplase has a faster clot lysis rate than alteplase [43]. However, clinical studies
of reteplase treatment for AIS did not show any additional benefit in any aspect when
compared with alteplase [12,44]. Our simulation results show that reteplase has the longest
lysis time (100 min) and the lowest temporal concentration due to the sluggish reaction
kinetics and shorter half-life than urokinase and tenecteplase. Another issue with reteplase
that should be mentioned is its dose regimen. There is no recommended dosing for stroke
treatment so far, and the dose regimen applied to our model may not be the best choice.
It has been suggested that reteplase can achieve fast lysis due to its low fibrin affinity,
which enhances its diffusion to the middle of the clot [43]. Our simulation results did not
reveal the same. The transport of drugs in the clot is shown in Figure 4. The concentration
distribution of reteplase along the length of the clot after the first bolus is similar to that of
other drugs. Moreover, the lysis of binding sites for the four drugs started at a similar time
at each point of the clot (Figure 7). Reteplase did not activate the lysis earlier than the other
drugs in the middle of the clot. A possible reason is that the free-phase reteplase is depleted
too fast to diffuse through the clot. Furthermore, the relation between the drug temporal
concentration and lysis rate can be seen clearly from Figures 4 and 7c. The lysis rate is much
slower after 40 min, while reteplase concentration in the clot drops to a low level of 0.01 M.
Our simulation results suggest that a higher initial dose or intra-arterial administration
may improve the efficacy of reteplase. On the other hand, low drug concentration and slow
kinetics help to keep the FBG concentration at a constant level and ensure a relatively low
risk of ICH. Reteplase also has a good ability to resist PAI-1 inhibition (Figures 8 and 9c)
due to the removal of the protease domain of the molecules.

5. Conclusions and Further Perspectives

IV thrombolysis of four drugs has been simulated using the 1D mathematical model
developed in our previous study. Our model is able to predict the therapeutic performance
of alteplase, tenecteplase, reteplase, and urokinase based on their properties and mecha-
nisms of action. The simulation results show that urokinase has the quickest recanalization
rate but the highest ICH risk, in accordance with clinical findings in the literature. Moreover,
our simulation of the tenecteplase therapy reveals its advantage over alteplase in providing
a lower ICH risk and higher resistance to PAI-1, suggesting that it should be considered as a
promising candidate for IV thrombolysis in AIS. Reteplase, on the other hand, is too slow to
provide comparable lysis efficacy to other drugs, although it has the lowest ICH risk among
the four drugs. The promising results obtained with our computational model encourages
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further studies of more complicated therapies, such as dual thrombolytic therapy with
pro-urokinase and alteplase [45–47]. Given the unpredictable risk of clinical studies for
AIS, our computational model can provide a useful tool to optimize the dose regimen
for combinational therapies of multiple drugs and newly developed drugs if the PKPD
mechanisms and reaction kinetics are known.
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Appendix A. Comparison with Clinical Data in the Literature

For each drug, we compared the systemic PK simulation results with the clinical data
of plasminogen activator, PLG, and FBG plasma concentrations from the literature. Model
validation for alteplase can be found in our previous study [22].

Appendix A.1. Tenecteplase

Comparisons were made with the clinical data reported in the TIBI 10B clinical trial [38]
with a 30 mg single-bolus TNK-tPA thrombolysis therapy in 886 acute myocardial infarction
patients. The predicted fibrinogen and tenecteplase plasma concentrations are in good
agreement with the clinical results. The predicted plasminogen concentration is 10% lower
than the clinical result at 180 min.
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Figure A1. Comparison between simulation results and clinical results from TIBI 10B trial [38].

Appendix A.2. Reteplase

Comparisons were made with the data reported in a dosing-range study in 18 healthy
volunteers with a single 5.5MU intravenous bolus injection over 2 min [37]. The specific
activity of reteplase (BM 06.022) in this case is 0.578 mg/MU. Our simulation results
show good agreement with the clinical results in terms of reteplase and FBG plasma
concentrations. The predicted PLG concentration is 20% higher than the clinical data at
120 min. However, the good match of FBG and reteplase plasma concentrations to the clinical
data indicates that there is no need to further modify the kinetic parameters. The standard
deviations of the clinal results should also be considered when making such comparisons.
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Appendix A.3. Urokinase

Comparisons were made with data reported in a pharmacokinetic study of urokinase
therapy for acute myocardial infarction [31]. Twelve patients with myocardial infarction
were dosed with an 11.3 mg urokinase bolus +11.3 mg IV infusion in 60 min. The predicted
fibrinogen concentration is slightly higher than the clinical result. In order to keep the
consistency of the reaction kinetic parameters between fibrinogen and plasmin applied in
all four models, the parameters were not adjusted.
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